溧阳养殖污水处理设备厂家相关资讯点击了解
- 供应商
- 常州天环净化设备有限公司
- 认证
- 报价
- ¥41500.00元每件
- 品牌
- 天环净化设备
- 处理量
- 1-1000³/h
- 售卖地
- 全国
- 联系电话
- 13961410015
- 手机号
- 13961410015
- 经理
- 吕经理
- 所在地
- 常州市新北区薛家镇吕墅东路2号
- 更新时间
- 2024-11-17 09:00
在电渗析试验之前,必须确保电源处于关闭状态,除此之外还需要检查磁泵开关和每个管道阀门。在密闭的前提下,将去离子水放入圆柱形有机玻璃罐中,启动机器,利用电渗析仪器,检查仪器侧面是否封闭完整,如果存在泄漏,立即关闭发动装置,将电渗析仪器中的水排出避免仪器损坏。
在电渗析仪器中划分各个渗析室,分为淡室、浓室等,确定渗析膜两侧离子的传输状态,根据渗析液的浓度依次进行渗析,设置渗析空间后,需要在各个空间内加入不同浓度的去离子水,将去离子水两侧的磁力泵打开,设定参数,保持整个渗析装置处于匀速渗析状态,待渗析储液槽满后,开启放液整流器。放液器的电压必须始终保持稳定,除此之外,相关的参数也必须与电渗析仪器一一对应。除此之外,实验的时间需要严格把控,确保取样时间与计时时间吻合,在实验中符合电渗析要求的参数即电渗析效率高时的参数,记录此时的具体参数值,完成渗析。渗析完成后,需要进行装置处理,清洗各个装置,统一归类,关闭渗析阀门,计算此时废液各个元素的组分。
进行废液蒸馏回收,需要使用真空膜,除此之外,在蒸馏前应检查各管的连接情况,检查有无泄漏问题,确认无问题后,开始试验,在试验过程中,首先需要将浴槽调整到指定的温度,然后启动蒸馏回收设备,开始进行蒸馏循环,在循环过程中,为了保证蒸馏效率,需要调节蒸馏速度,保证蒸馏速度,蒸馏后用产品收集器收集废水进行含量测量,每隔2小时检测一次。再清洗水箱等装置,待中空纤维膜干燥后再使用,然后根据采集的样本进行相关分析和计算。
电解试验前,由于纯水具有特殊的物理性质,因此需要静置后才能进行后续试验。静置时间一般保持在30分钟左右,观察纯水的状态,达到符合标准后即可开始试验。实验还需要在保证装置稳定的前提下进行。试验初期,将静置好的原水放入电解装置中,启动电解装置,观察此时电解装置电压的变化状态,将电接点呀调整到指定的范围,一段时间后即可进行样品采集。每隔三十分钟采集一次,保证样品的平均状态,在样品检测值符合标准后即可停止电解,恢复电解装置的原本状态,清洗用到的仪器,计算分析此时样品的组成成分,确保实验的准确性。
某印染厂每日需要处理的废水约为6000立方米,相应废水在处理前的指标参数如下所示:ph值为8-9;有机物质含量平均为每升2000毫克;悬浮物含量平均为每升300毫克;氨氮含量平均为每升50毫克;色度为500倍;总锑含量为每升2毫克;总氮含量为每升70毫克。经过处理后的水排放标准满足《纺织染整工业污染物排放标准》中的相关要求。
在进行改造前,废水处理的流程如下所示:综合废水进入调节池,在剔除垃圾杂物后进入加药初沉池,加入消石灰、聚合硫酸铁、聚丙烯酰胺消除色度、有机物以及部分总锑;转移至厌氧池,脱色、剔除总氮及部分有机物;转移至活性污泥池,再次剔除色度、有机物、部分氨氮;转移至二沉池实施泥水分离,其中的污泥回流至厌氧池内,而上层清液转移至加药终沉池;在加药终沉池中的液体加入聚合氯化铝以及聚丙烯酰胺,全面剔除残余的色度、有机物,在达到标准后排放。由于在实际的处理过程中存在总锑与总氮瞬时超标的问题,所以展开技术改造。
2、改造设计
2.1 改造思路
(1)总氮。
①实施调节池的扩建处理,保证待处理废水可以在调节池内留存至少20小时,实现均质均量。
②将原有的厌氧池以及活性污泥池调整为厌氧池、兼氧池以及两段好氧池,以此达到降低废水在厌氧池内停留时长的效果,提升厌氧污泥负荷,为颗粒污泥的形成创设有利条件,以此达到提高出水效果的目标。同时,兼氧池可以剔除废水中包含着的硫化氢,形成更好的反硝化环境,更彻底的清除总氮;两段好氧池的设置实现了对废水停留于好氧池内时间的延长,支持废水中有机物的去除。
(2)总锑及污泥减量化。
为了进一步降低废水处理中产生的污泥量,主要将原先单一使用聚合硫酸铁剔除总锑的方式转变为使用聚合硫酸铁与硫酸组合剔除总锑的形式;并使用氢氧化钠对废水的ph值进行调回处理。同时,在处理终沉池中废液的过程中,先调节ph值至酸性,然后加入聚合硫酸铁清除总锑,后使用氢氧化钠调回ph值的方式所产生的污泥量更少,且总锑的清除效果也相对理想。此时,所产生的物化污泥可以进行再利用,即传递至搅拌池内,随后加入加药初沉池中支持废液的处理。
2.2 工艺流程
改造后,该厂的印染废水处理流程如下所示:综合废水进入调节池,在剔除垃圾杂物后进入加药初沉池,在其中加入来源于终沉池的物化污泥,以此去除废水中包含的色度、有机物、悬浮物、总锑;转移至厌氧池,依托厌氧菌促使废水中包含着的高分子有机物开环断裂,还原有色基团以及有机氮,实现脱色并生成氨氮;转移至兼氧池,结合微曝气设备的应用,剔除厌氧出水中包含着的少量硫化氢,利用反硝化菌剔除硝态氮、亚硝态氮;转移至两段好氧池,使用好氧菌去除有机物,依托硝化菌去除氨氮;转移至二沉池,促使泥水进入分离状态,其中的污泥转移至污泥池内,结合加药初沉池中产生的物化污泥一共移送至污泥脱水系统,并在加入氢氧化钙以及聚丙烯酰胺后实施泥饼委外处置;在二沉池中形成的上层清液转移至加药终沉池内,加入硫酸调整ph值,当清液的ph值稳定在3-4之间时依次投入聚合硫酸铁、氢氧化钠、聚丙烯酰胺,剔除其中包含着的有机物以及总锑;在终处理完成的液体达到排放标准时,进行废水排放操作。
3、成效分析
对完成改造后5个月的印染废水处理效果进行监测,发现所有出水指标均达到设计标准且满足行业要求。选取其中一个月的数据进行说明:对调节池排出的废水进行检测,发现有机物含量为每升1784毫克,氨氮的含量为每升35毫克,总氮的含量为每升42毫克,总锑的含量为每升1.75毫克,ph值为8.4;对加药初沉池排出的废水进行检测,发现有机物含量为每升1320毫克,氨氮的含量为每升32毫克,总氮的含量为每升40毫克,总锑的含量为每升0.78毫克,ph值为7.5;对厌氧沉淀池排出的废水进行检测,发现有机物含量为每升1005毫克,氨氮的含量为每升38毫克,总氮的含量为每升412毫克,总锑的含量为每升0.55毫克,ph值为7.5;对二沉池排出的废水进行检测,发现有机物含量为每升353毫克,氨氮的含量为每升1.5毫克,总氮的含量为每升21毫克,总锑的含量为每升0.26毫克,ph值为7.1;对加药终沉池排出的废水进行检测,发现有机物含量为每升
在过去的10余年里,电镀企业对电镀废水处理进行过比较系统的工艺研究,解决了传统电镀废水处理的一般性技术问题。然而,近些年产能迅速增加的碱性锌镍合金电镀工艺又给业界提出了新的挑战。
一些碱性锌镍合金电镀后的漂洗水和镀层钝化后的漂洗水中含有二乙烯三胺、四羟乙基乙二胺、锌离子、镍离子、羧酸配位剂、三价铬离子、钴离子等污染物。二乙烯三胺的抗氧化能力极强,给电镀废水的处理带来了很大的困难,笔者为此发明了用氧化-螯合沉淀法处理这种电镀废水的新方案。
试验表明,在碱性锌镍合金电镀过程中四羟乙基乙二胺在阳极表面能被氧化成乙二胺四乙酸四钠盐,使这种电镀废水中含有一定量的乙二胺四乙酸配位剂。乙二胺四乙酸可与三价铬、镍、锌、钴等金属离子生成十分稳定的配离子,用现有技术中的螯合沉淀法并不能有效去除这些配离子中的重金属离子。
乙二胺四乙酸的抗氧化能力也极强,一般不能被双氧水、漂水等常规的氧化剂所破坏,碱性锌镍合金电镀和钝化废水含有这种配位剂,其处理难度更大。以往的研究都没有考虑碱性锌镍合金镀槽中能产生乙二胺四乙酸四钠盐,因此该配位剂对碱性锌镍合金电镀废水处理影响的研究尚未见报道。基于此,研究开发了一种碱性锌镍合金电镀和钝化废水的组合处理方法。
1、处理工艺
1.1 原理
在ph为10~12的范围内,亚铁离子和钙离子能够共同沉淀去除废水中的羧酸配位剂。二乙烯三胺对镍离子、钴离子和锌离子的配位能力较强,但对三价铬离子没有配位作用。在ph为10~12的条件下去除羧酸配位剂后,三价铬离子生成氢氧化铬沉淀。
在ph为4.5~5.5的条件下,螯合剂二甲基二硫代氨基甲酸钠不仅能沉淀去除镍离子、钴离子和锌离子,还能进一步沉淀残留的三价铬离子。
21世纪以来,水资源短缺是全世界面临的一个重要难题。随着经济不断提升,工业生产高速发展的同时大量的高盐废水随之产生。高盐废水的含盐质量分数不小于1%,除了包括cl-、so42-、na+、ca2+等溶解性无机盐离子,还含有难处理的有机污染物以及质量分数不小于3.5%的总溶解性固体物(tds),直接排放不仅污染环境,造成恶劣的影响,而且会浪费许多潜在资源。如今水资源严重匮乏,使得研究学者们开始高度关注高盐废水的回收零排放技术和资源化利用,这也是今后工业废水处理领域的重难点。
1、高盐废水的来源与组成
工业废水主要含有机物和无机盐2大类,组成成分复杂,包括k+、ca2+、na+、mg2+、co2-3、no32-、cl-、so42-等离子,其中na+、cl-、so42-离子占总无机盐离子的90%以上,远远高于其他离子。高盐废水常见的来源途径有:①用于日常生活的海水成为含盐生活废水;②用于滨海工业生产的海水作为废水排出;③工业生产过程中产生的含盐废水,这也是主要来源。例如,石油、天然气的采集或加工、火力发电、固体燃料的加工、印染、造纸、化工等工业领域都会产生大量的高盐废水,其溶解物多、含盐浓度高,甚至含有悬浮油、乳化油和溶解油等油类物质以及甘油、中低碳链等有机物质。此外,还伴随着重金属、氰化物、芳香族及杂环化合物等有害物质及放射性元素等多种污染物质。总体来说,工业废水有“三高”:高有机物、高含盐量、高硬度。
2、处理技术现状
废水集中式处理在传统治理中占据主导地位,但由于高盐废水成分复杂、波动性大、毒性大,集中收集、粗放式处理反而将这些特点叠加强化,使得处理难度进一步增大,费用增高。因此,为了满足严格的环保要求,工业废水处理技术也在不断改进,日趋成熟。目前,浓缩技术、结晶技术,以及2种技术耦合协同后的技术较多地用于实现高盐废水回收零排放。根据高盐废水的实际情况,有时还需要在浓缩技术之前增加预处理技术,例如化学沉淀法、多介质过滤法、离子交换树脂法和吸附法等,以便为后续工艺提供更好的处理条件。
作为高盐废水资源化处理的核心工艺,浓缩技术根据不同的处理对象和适用范围分为热浓缩和膜浓缩。热浓缩技术适于处理高tds和cod高达数百克每升的废水,通过加热使高盐废水中的离子高倍浓缩,主要包括多级闪蒸(msf)、多效蒸发(med)以及机械蒸汽再压缩蒸发(mvr)。msf是将高盐废水加热至一定温度后依次引入压力逐渐降低的容器中实现闪蒸气化,冷凝后得到淡水。med是将多个蒸发器串联组成多效蒸发,重复利用蒸汽从而提高效率,降低运行成本。mvr以电能驱动蒸汽压缩并循环利用,大程度地回收蒸汽潜能使得能耗大幅度降低。将上述3种热浓缩技术的各项特征进行对比