丹阳香料废水处理一体化污水处理设备 样式美观

供应商
常州天环净化设备有限公司
认证
报价
58000.00元每件
品牌
天环净化设备
处理量
1-1000³/h
售卖地
全国
联系电话
13961410015
手机号
13961410015
经理
吕经理
所在地
常州市新北区薛家镇吕墅东路2号
更新时间
2024-11-27 09:00

详细介绍

 针对炼油、化工生产中产生的污水,必须采取有效的治理措施,以避免其对生态环境的污染,同时还可以节省大量的水资源,有利于提高石油化工行业的经济效益与社会效益。目前,我国对于石油化工污水,主要采取物理处理法、化学处理法以及生物处理法,其中,生物处理法的处理效果相对较好,且不会造成二次污染,因此得到了越来越多的认可与青睐。

  1、生物増效技术

  自然环境之中,生物菌种有着适应力强、分布广、数量多以及代谢快的特点。在污水治理工作中应用生物菌种,可以对污水中所含有的有机物进行快速、有效地降解。生物增效技术指的是,在原有生化系统中加入优势菌种,既可以引进外源菌种,也可以在原有生化系统中选择优势菌种加以培养。但是,其所应用的菌种,需要符合以下几个特征:菌种应具备良好的活性。必须能够有效地对目标污染物进行降解。菌种应具备一定的竞争能力。

  2、生物増效技术在石油化工污水处理中的应用根据

  目前,我国针对石油化工污水,主要采取物理处理法、化学处理法以及生物处理法。原则上来说,只要采取生物法对石油化工污水进行治理,便可以应用生物增效技术,以达到提高污水治理效果的目的。在石油化工污水处理系统中应用生物增效技术,根据不同情况,可以得到不同的效果。若是原有生化系统遭受破坏,通过应用生物增效技术,则可以使其恢复能力得到提高。若是应用新的生化系统,通过应用生物增效技术,便可以使其运行速度得到提髙。若是原有生化系统的抗冲击能力较差,通过应用生物增效技术,便可以其抗冲击能力得到加强。若是原有生化系统的污水处理能力较差,通过应用生物增效技术,便可以使其污水处理能力得到加强。

  3、石油化工污水处理中生物増效技术的应用效果

  3.1 有利于提高污水处理效果

  某石油化工企业,污水处理装置采取活性污泥处理技术,具体工艺为“隔油+浮选+曝气+沉淀”,生化处理装置采用活性污泥法,年处理污水量为400万吨。正常运行状态下,污水处理量为每小时400吨,污水进入曝气池的时候,各项参数如下:ph值6~9,cod含量600mg/l,溶解氧2.5mg/l,含油质量浓度100mg/l,污泥质量浓度2~3g/l。污水处理工艺流程主要是,高浓度污水进入缓冲罐,进行一段时间的沉井之后,再依次进入隔油池、气浮池、曝气池以及沉淀池进行处理,后出水。出水水质的各项参数:cod含量205mg/l,含油质量浓度为15.7mg/l。

  以现有污水处理工艺流程为基础,应用生物增效技术,在曝气池的水渠入口位置增加有效菌种,结果发现,出水水质的各项参数:cod含量124g/l,含油质量浓度为8.5mg/l。由此可以看出,应用生物增效技术之后,在很大程度上提高了污水处理效果,大大降低了污水中cod、油等成分的含量,增强了原有生化系统对污水中cod、油的处理能力。

  3.2 有利于改善污泥性能

  该石油化工企业设置了3套纯氧曝气装置,以便于对聚酯装置、芳烃装置、pta中的污水进行处理。对pta中的污水进行处理之后,若是出水水质符合标准要求,则输送至反渗透中水回中装置中进行二次处理,并将其当作循环水补水使用。根据水质条件,选择增效菌种,将其添加到纯氧曝气装置中去,定期从中取出活性污泥,并与未添加增效菌种的纯氧曝气装置中的活性污泥进行比较。结果发现,添加了增效菌种的纯氧曝气装置中的活性污泥,其性能明显优于未添加增效菌种的纯氧曝气装置中的活性污泥。添加了増效菌种的纯氧曝气装置中的活性污泥,其絮体相对比较紧密,且在镜检下发现了大量的、活跃性很强的微生物,如鞭毛虫、漫游虫等。此外,添加了増效菌种的纯氧曝气装置中的活性污泥之中,还发现了新的微生物,也就是红斑瓢体虫,其以污泥中的有机物、细菌为食物,从而可以降低污泥的体积指数,也有效改善了污泥的性能。

 在煤制甲醇、煤制油、合成二甲醚等煤炭深加工中,煤炭气化是煤炭进行转化的有效途径之一。在此过程中会排放出大量的污水,其中包含大量的酚、二氧化碳、硫化氢、氨和多种有机质。如果直接对这些污水进行排放,就会对环境造成非常大的污染。因此需要进行脱酸、氨、酚处理。目前在实际脱除工艺处理中,很难达到良好的脱除效果,废水的排放质量也很难保证。如果采用单塔加压汽提工艺,则可以有效解决该问题。

  1、煤气化废水体系的特点

  通过对煤气化长污水排放的成分监察,发现其中酚和氨的浓度往往会比较高,污水的ph值在9以上。其中酚属于一种剧毒物质,如果水体中的酚含量超过了一定的浓度,有机生物将难以生存。由于这些物质会对环境造成非常大的伤害,因此需要对其进行进一步的污水处理,有效脱除其中的酚、氨,这样才能进入下一步的生化处理段。

  在传统的煤气化水处理过程中,经常通过脱酸塔来去除其中的酸性气体,然后采用二异丙醚来萃取脱酚,之后再采用蒸氨法来去除其中的氨,利用萃取剂进行回收。在将其中的酸性成分、氨和酚回收完毕后,再进行生化处理。虽然该处理工艺已经得到了多年的实际应用,但还是有不完善之处。在脱酸塔脱除其中大量的酸后,溶液的ph值会集中在9到10.5之间,这会极大影响到酚的脱除效果。如果污水的ph值超过了12,酚就基本上不能被脱除,这会对后续的生化处理有非常大的影响。因此,需要在萃取酚之前有效去除其中的酸性气体和氨,这样才能让污水的ph值保持在一个比较合适的范围,满足生化处理对酚的要求。

  为了有效解决这个问题,设计了一种单塔测抽氨的设备,可以同时去除污水中的氨和酸性成分,是一种比较理想的处理工艺。该工艺在石油炼化生产中已经得到了成功的应用,单煤气化水体系和石化行业中废水成分并不相同:

  1)煤气化污水的成分更为复杂。煤气化水中的成分主要以co2为主,其中硫化氢的量往往较低,co2在常温下水中的溶解度更低,因此如果采用汽提的方法更容易脱除其中的酸性气体。此外,石化废水中的氨成分往往会比较复杂,其中除了存在游离态的氨之外,还存在大量离子态的氨。

  2)煤气化污水中酚类物质浓度更多,且成分更为复杂。

  3)煤气化废水中含有一定量的脂肪酸和油类物质。其中脂肪酸的成分浓度较高,还有很多细小的粉尘不能完全沉降分离。在实际生产的过程中,各种有机质和粉尘进行混合,很容易发生乳化反应,让设备产生严重的结垢现象,堵塞塔板和管道,从而大大影响汽液的传质效率,降低对污水的处理能力。

  2、单塔汽提侧线脱氨的工艺原理

  在该工艺中,主要是利用了汽提塔内上下的温差,和酸性气体和氨在水中溶解度的特性,从而有效达到分离的目的。在压力为0.5mpa的状态下,co2在60°下挥发度大于氨的挥发度,而氨在溶液中的溶解度要大于co2的溶解度。因此,在进入到汽提塔酸性气体的精馏段,会使大量的水蒸气和氨转入液相而随液体向下流动。大部分的co2等酸性气体会被汽提到塔顶处得以去除。如果对塔体的温度进行有效的控制,塔的中部会形成氨的质量分数较大的液相和富氨汽,这些富氨汽将从塔中间侧线采出并采用三级冷凝进行进一步的浓缩。在有效去除污水中酸性气体和氨后,能够有效降低污水的ph值,有利于后续萃取工艺的顺利进行。

  在该工艺的实际进行中,对富氨抽出位置的选择和抽出量的选取非常重要,这是汽提塔优化过程中的一个重要量,其会直接影响塔的实际操作效果。为此,我将要在中对该量的选择进行重点的介绍。

  3、侧线及其抽出位置的选择

  根据实际对工艺装置的研究中发现,侧线富氨汽采出的位置与塔顶气相采出氨质量分数、塔底净化水中的氨存在着一定的关系。随着侧线采出位置的下移,塔顶气中中氨的质量分数呈现出下降的趋势,这会有利于氨的脱除。但如果其采出位置下降超过了一定的值,塔底中的氨成分含量会急剧上升。由于塔内的温度从上到下是逐渐升高的,因此侧线位置的选择应该考虑到塔的实际分离效果,如果将位置适当的上移,会让侧富氨汽会带走更少的热,从而减少塔的热负荷。但如果过于考上,就会对酸性气体成分的分布造成较大的影响。在通常的情况下,如果侧线的位置越高,氨中酸性气体的成分含量会有增加的趋势,因此在确定侧线的位置时,应该综合考虑多种因素。

  4、侧线采储量

  侧线氨的采出量将影响塔下部汽提的强度和蒸汽的消耗量。随着抽出量的逐渐增加,塔底净化水氨质量分数也会呈现出下降的趋势。当侧线的采取量超过进料量的9%时,塔底净化水中氨的质量浓度会低于100mg/l,水质情况得到明显的好转。如果继续增加采出量,蒸汽的单耗和侧线的凝液量也会随之增加,循环液中的氨含量也会有所增加,因此过分加大侧线抽出量是不合适的。在通常的情况下,会将侧线抽出量维持在进料总质量的9%左右。

  5、三级冷凝系统

  三级分凝系统主要用于脱除氨中的酸性气体和水蒸气,从而提高气相中氨的质量分数。因此需要做好对操作温度和操作压力的控制,这对提高三级分凝系统出口处氨气的质量分数和降低其中酸性气体的含量,有较大的作用,有效降低后续氨精制系统负荷,对三级分凝液的循环量液也会有较大的影响。在通常的情况下,较低的温度和较高的温度将更有利于氨的浓缩。根据后续氨精制工艺的要求,一般会将温度选择在40~50℃。在经过3级分凝后,氨中的酸性气体和挥发酚就会全部溶解在分凝液中,并终返回到单塔系统,氨在浓缩后的质量分数可以达到99%以上,为后续的氨精制打下了一个非常好的基础。

  6、实际工业运行分析

  该工艺在实际生产过程中,已经替代了原有的工艺流程。该加压塔的设计处理量为80t/h,该塔直径为2.2m,塔高为37m。经过长时间的生产研究,终将塔顶的压力选定在0.6mpa,塔底的温度为160℃,塔顶的运行温度为80℃,侧线抽出量的质量百分数为9%。该工艺在进入稳定运行段后,原来工艺处理后废水中氨和二氧化碳的质量浓度分别为450mg/l和1500mg/l。在新的工艺流程中,氨的质量分数下降到30mg/l,二氧化碳的含量已经非常少。经过工艺改造后,废水的ph值得到了显著的降低,可以维持在7左右,有利于后续萃取工艺的进行。

  为了对采出口的数量和位置进行确定,使用了相关的工艺模拟软件。结果表明,在采用3个采出口后,切换采出侧线的位置对实际操作影响并不大。之后的工业生产实践,也非常好的证实了该结论,因此仅设计1~2个侧线采出口即可。

  采用进料板的第28块板采出,通过对侧线采出富氨汽的分析,经过软件模拟的结果和实际结果,氨气中的二氧化碳质量分数分别为0.5%和0.9%,而氨的质量分数为16.9%和15.7%。侧线氨气的氨质量分数较高,这样更有利于氨的浓缩和提纯,软件模拟结果可以很好反应侧线氨气的实际组成。


废水处理解决方案,废水处理,一体化处理设备,污水处理,污水处理方案
展开全文
我们其他产品
我们的新闻
微信咨询 在线询价 拨打电话