西门子6ES7321-1BP00-0AA0性能参数
- 供应商
- 浔之漫智控技术-西门子PLC代理商
- 认证
- 手机号
- 15221406036
- 经理
- 聂航
- 所在地
- 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
- 更新时间
- 2024-05-08 07:10
西门子6es7321-1bp00-0aa0性能参数
一、 电除尘器低压控制系统的组成及控制要求
电除尘器的低压控制工艺主要包括振打控制,绝缘子温箱电加热控制灰斗电加热控制、卸灰控制、料位控制、进出口温度显示、**隔离开关到位显示以及远程通讯等。
1.1振打控制系统
电极振打清灰是电除尘器的主要工作过程,其清灰效果不仅与施加在阴阳极上的振打加速度有关,而且振打周期对其影响也很大。传统的振打方式为切向振打,其控制可分为连续振打和定时振打。在振打力度和均匀性都满足要求时,振打制度是否合理,对电除尘器除尘效率影响极大。振打过频,收集在阳极极板上的粉尘不能成块落入灰斗,二次飞扬严重,尤其末级电场的二次飞扬,将大大降低除尘效率。反之,振打周期过长,阳极上的粉尘堆积过厚,会使阴阳极之间电压降低,二次电流降低,电晕功率减小,除尘效率下降;阳极板严重积灰甚至形成反电晕,使已经被收集在在阳极板上的粉尘再次进入气流。因此,选择合理的振打周期,将有助于更好地清灰和提高除尘效果。
1.2卸灰控制系统
进入电除尘的粉尘被阴阳极捕获后,由振打系统振落在灰斗中,这些灰料应适时排送出去,灰料堆积太多,相互了增加灰斗的荷重外,严重时还会造成阴阳之间的短路,使电除尘器无法正常运行,相反,灰斗没有储灰,在灰斗出口出现漏风,引起二次扬尘,使除尘效率降低。
1.3极热控制系统
加热控制系统的对象包括大梁电加热器、阴瓷轴电加热器、灰斗电加热器等。常用的控制策略是根据测温装置的温度信号对电加热器进行恒温控制。当温度地狱下限时,启动电加热器加热;温度高于上限时,停止电加热器加热。
二、电除尘器低压控制系统的应用实例
山东某厂使用的低压控制系统除尘室采用三电场除尘方式,电除尘器3个电场有6个振打电机、3个灰斗加热控制器、3根大梁加热控制器、3个卸灰电机,再加上报**信号输出端、热风电机控制、总启动、故障解除、3个电场料位计检测输入、大梁灰斗等处温度、控制等,总计是20点数字输出、23点数字量输入、8点模拟量输入,6tc温度测量输入。
根据以上计算,电除尘器低压控制系统以我司的cpu-224a为主控部分。plc模块布置如图下图所示
其中cpu224a模块接受电机驱动保护器的故障信号,电加热保护控制器的故障信号,温度采集处理器的温度信号,料位信号以及输卸灰设备的电气信号等,经分析处理后,根据工艺流程把控制振打电机、加热器、报警器等控制信号输给相应的外部设备。数字量输入/输出模块em223把cpu模块控制卸灰电机的信号输给相应的外部设备。模拟量输入模块em231把**硅整流设备的有关信号及温度采集器送进来的进出口烟气温度,大梁、瓷轴、灰斗等处的温度信号送给cpu模块分析处理。
三、电除尘器低压控制系统的软件设计
3.1振打控制设计
根据多年对电除尘器低压控制系统的运行经验,为提高电除尘器的除尘效率,有效降低功耗,对本地振打电机的优化控制作如下要求:
同一电场中阴极和阳极振打不能同时进行;
多电场除尘器中,前后电场阳极(或阴极)振打不能同时进行;
设置有振打槽板的电除尘器,其末电场阳极振打和槽板振打不能同时进行。
3.2加热工作
加热器采用恒温区间控制,即以设定温度的上、下振幅为工作区间来控制加热器的启停。当测量温度低于设定温度低于设定温度的下偏差时,加热器开始工作,当加热到测量温度高于设定温度的上偏差时,加热器停止工作,直到测量温度低于设定温度的下偏差,加热器再次开始加热,循环往复,完成温度控制。
3.3卸灰控制设计
电除尘器的卸灰方式可分为定时自动卸灰,上、下料位自动卸灰及上料位定时自动卸灰。在本系统中采用的是“高料位+时序”的控制方法,即高料位定时卸灰,周期卸灰相结合的综合方式。所谓高料位卸灰指的是当低压控制系统检测到某一上料位信号时先启动相应的卸灰装置;当器工作一定时间后,再延时一段时间停止相应的输灰联锁系统。为避免出现料位计损坏或者误报而导致电场堵灰,又加入定时周期卸灰功能,以保证系统能够进行自动卸灰。
四、结束语
oyes-200系列plc设计的低压控制系统,用于完成振打电机、卸灰电机和辅助加热等功能的控制,可以充分发挥plc的可靠性和抗干扰能力等特点,具有外部接线简单、灵活、软件修改方便,容易满足各项特定工艺要求的等优点。
oyes-cpu224a,2通信口、24k程序空间、10k数据空间,14di/10do,可扩展3个io模块,是我司用于市场推广的重点产品,以其超强的性价比越来越受到客户的青睐。(end)
保证大精度和速度
twins牌燃气设备配件在国际家用电器制造商生产的煤气灶和烤箱中广泛应用。这些零部件由位于意大利北部的beocom公司开发和建造的机器上加工。大约20 年前,beocom开发了台全自动串联式安装和测试设备,它具有两个并行排列的测试站,其 twins品牌名称由此而来。这一创新产品奠定了公司长期成功的基础。近,beocom采用倍福的集成式 plc和运动控制解决方案完成了一条全新的用于加工小型煤气设备零部件的连续生产线。
“在我们刚开发好时,这款自动串联式测试装置大的创新特点是在两个工作站之间,零部件的拾放是相对独立的。”与franco borsi一起于 1995 年共同创立beocom公司的 ivanomodei说道。“虽然自动串联装置在当时并不是什么是新事物,但以前只有在两个加工操作都完成后才能拾取零部件,因此周期时间也比较长。转向使用基于pc控制平台后,我们能够基于时序主站逻辑分别缩短周期和控制时间。”
近,beocom开发了一条用于安装在燃气配件中的金属套管加工(铣削、切削、车削、钻孔、螺纹切削,等等)的连续生产线。这些组件负责确保煤气设备的密封性,这也是为什么这些组件要采用黄铜棒以大精度加工。“我们的连续生产线基于电子控制回转工作台原理,反之,它也可以从我们扎实的自动化组装和测试机器的知识中受益。”ivanomodei说道。吞吐量不断变化,但每天通常是在数千个零部件范围内变化,这要取决于工件的尺寸和加工要求。零部件被自动放在输送工位上。这实际上消除了配置修改后的停机时间并显著提高了生产效率。
图1 以旋转式表盘和分度机形式呈现的连续生产线用于加工煤气设备的小型零部件
beckhoff的嵌入式控制器集成 plc 和运动控制
倍福的 cx2030 嵌入式控制器用作连续生产线的控制单元。它不仅监测分布式 i/o 点,而且还控制31 根轴的运动同步。am8000系列伺服电机采用单电缆技术,并实施了直线电机。由传感器、转换器和执行器构成的整套外设通过ethercat连接。使用温度和振动传感器可以为整个连续生产线监测测得的值。除了防护等级为ip 20 的ethercat i/o 端子模块之外,还使用了坚固耐用的 ip 67现场总线端子盒,它们直接安装在机器上。安全解决方案通过twinsafe i/o 端子模块,它们可以直接插接在嵌入式控制器后面。hmi硬件用的是一台 15 英寸的 cp3915远程多点触控控制面板。定制的面板连接到一个符合人体工程学机器操作的可移动安装臂上。
twins 连续生产线的中央控制柜概览图,煤气设备的小型零部件就是在这个生产线上加工而成的总共使用了
15 个双通道和 2 个单通道 ax5xxx 系列ethercat伺服驱动器用于控制这些轴
由于控制架构基于标准组件,beocom为连续生产线开发完整的应用软件。ivanomodei自豪地指出该软件提供了传统 nc 控制器所不具备的功能。
beocom将基于 pc 的控制技术作为标准
公司创始人 ivan omodei列出了一系列现在将倍福基于 pc的控制技术作为其机器标准的原因。“我们以前使用的解决方案不再具有竞争力。早在 2011年,我们就给我们的机器配备了倍福控制平台。我们很快意识到它非常适合用于满足我们在性能、速度和精度方面的要求。组装和测试线由多个子组件构成,因此集中式pc控制系统让我们能够利用全部集成所有组件获得佳性能。此外,ethercat作为高速通讯系统能够保证数千个机器边缘数据点的快速、一致性的信号传输。
据 ivan omodei所述,另一个亮点是基于pc和ethercat的控制技术所具备的诊断能力。“ethercat让我们能够将诊断**定位到各个 i/o 点,而不是整个网段。基于pc的控制平台,也可以轻松地进行远程故障诊断。例如,我们可以检测是否真的有问题或者由于错误操作或机器设置触发了报警,这种情况经常出现。除此之外,高性能的嵌入式控制器,加上合适大小的存储介质,能够实现**的产品跟踪
1 引言
在对自动化设备进行plc编程的过程中,由于各种输入变量、输出变量及中间变量之间的关系错综复杂,开始时往往毫无头绪。如果能够根据设备所要实现的各种功能,列出各种变量之间的函数表达式,就可以清楚的分析它们之间的逻辑关系,继而根据表达式编写plc程序,下面以深圳机场的行李输送与安检联动系统为例,介绍如何运用函数表达式来分析各种变量之间的逻辑关系的。
2 行李输送与安检设备联动系统概述
旅客在乘机前需要办理登机手续,机场设有办理旅客登机手续的专用设备-值机柜台,值机柜台与行李输送、安检构成旅客行李安检、输送联动系统,乘客需要托运的行李,都必须通过行李安检系统的安全检查。如图1所示,一般情况下,行李输送与安检联动系统按两个值机柜台共用一台双通道x光机设计,两个值机柜按相同的工作模式工作。值机系统包括值机柜台、称重皮带(web)、x光机皮带(xrb)、注入皮带(wab)、脚踏开关等。安装在web和wab上光电管(pec)用作die-back功能。每条皮带在同一时间只能传送一件行李。
行李输送与安检联动系统采用上位机集中、plc现场分散控制模式进行控制。plc选用rockwellcontrollogix系列,编程软件采用rslogix5000。图1为机场行李输送与安检设备构成的联动系统。
2.1 值机面板
图2示出了值机面板图。使用值机柜台前,打开钥匙开关,值机系统进入正常工作状态。每个值机面板有4个状态指示灯,显示值机当前行李状态。
“cid状态”指示灯变常亮,表示该值机柜台已处于工作就绪状态,可以办理登机手续,值机员依据值机面板上状态指示灯进行相应操作(值机面板4个状态指示灯功能如表1所示)。
2.2 x光机
x光机作为行李安检系统的核心设备,在行李安全检查方面起着决定性的作用。x光机通过发射x射线照射,使行李在x光机电脑屏幕上形成图像,安检员根据电脑屏幕上的成像判断行李是否安全,确定行李能否通过安全检查装上飞机。行李输送系统与x光机接口通过屏蔽电缆(4根信号线和1根公共线)连接,两个行李值机柜台共用一台双通道x光机。
信号线名称、性质及逻辑定义:
0# _________ 公共线;
1# _________ 号逻辑控制线;
2# _________ 第二号逻辑控制线;
3# _________ 第三号逻辑控制线;
4# _________ 第四号逻辑控制线。
其中,4#3#用于控制b通道,2#1#用于控制a通道。
1#、2#、3#、4#线对0#线短路(闭合)定义为“1”态,1#、2#、3#、4#线对0#线开路(断开)定义为“0”态,×为无关态。
3 联动逻辑功能定义
3.1 信号线逻辑功能定义
根据行李输送系统与x光机接口通信协议,对1#、2#、3#、4#、0#线信号线逻辑功能定义如下:
(1)4#3#2#1#=1111时,x光机处于关闭状态。4#3#2#1#≠1111时,x光机开机,值机系统进入工作状态。
(2)x光机正常开机后,自动将4#3#2#1#置为0000,值机系统初始化,值机人员开始办理登机手续。次脚踩脚踏开关时,运行web(在节能状态下,自动启动行李输送系统设备),将旅客要求托运的行李运送到web的光眼1处停下,将打印的行李信息条码挂在行李上;在x光机允许接收行李的条件下,第二次脚踩脚踏开关时,web、xrb和wab同时运行,旅客行李从web进入wrb,接受安全检查。行李完全进入wrb后,web在系统设定的时限内自动停运,xrb和wab将行李运送至wab的pec处停止,根据扫描检查结果,确定行李在wab上等待与否。
(3)4#3#2#1#=××11时,x光机内的a通道已经接收到来自web的行李,该行李的图像未送到安检工作站。此时,通道a和b的wrb均不得接收来自web的行李(a通道自锁、b通道互锁)。
(4)4#3#2#1#=11××时,x光机内的b通道已经接收到来自web的行李,该行李的图像未送到安检工作站。此时,通道b和a的wrb均不得接收来自web的行李(b通道自锁、a通道互锁)。
(5)4#3#2#1#=××10时,经x光机扫描a通道行李的图像已经送到安检工作站,该行李的图像未经安检员判读。此时,a通道的wrb不得接收来自web的行李(a通道的wrb自锁),b通道的wrb可以接收来自web的行李(b通道的wrb互锁状态解除)。
(6)4#3#2#1#=10××时,经x光机扫描b通道的行李图像已经送到安检工作站,该行李的图像未经安检员判读。此时,b通道的wrb不得接收来自web的行李(b通道的wrb自锁),a通道的wrb可以接收来自web的行李(a通道的wrb互锁状态解除)。
(7)4#3#2#1#=××00时,a通道行李的图像经过安检员判读,确认安全,wab将该行李注入行李收集皮带,同时解除a通道自锁,允许后续行李进入a通道的wrb。
(8)4#3#2#1#=00××时,b通道的行李图像经过安检员判读,确认安全,wab将该行李注入行李收集皮带,同时解除b通道自锁,允许后续行李进入b通道的wrb。
(9)4#3#2#1#=××01时,a通道的行李图像经过安检员判读,确认该行李行李可疑,安检人员应将该行李从wab上取下开包检,触发x光机上复位开关(使4#3#2#1#=××00),解除a通道的自锁,允许后续行李进入a通道的wrb。
(10)4#3#2#1#=01××时,b通道的行李图像经过安检员判读,确认该行李行李可疑,安检人员应将该行李从wab上取下开包检,触发x光机上复位开关(使4#3#2#1#=00××),解除b通道的自锁,允许后续行李进入b通道的wrb。
4 列出输入变量、输出变量、中间变量及其逻辑关系表达式
4.1 列出系统所用到的输入变量和输出变量
如表2所示。
4.2根据系统的逻辑功能列出各种中间变量及其与输入变量、输出变量之间的关系,进行编程
(1)首先,根据x光机信号线的逻辑功能定义得到柜台a、b通道的各种状态与x光机信号的关系表达式:
x光机关闭状态(y0)=x1x2x3x4
a自锁b互锁(y1)=x1x2
b自锁a互锁(y2)=x3x4
a自锁b解互锁(y3)=x1x2
b自锁a解互锁(y4)=x3x4
安检正常,a解自锁(y5)=x1x2
安检正常,b解自锁(y6)=x3x4
a行李可疑(y7)=x1x2
b行李可疑(y8)=x3x4
a通道脚踏开关互锁sa=a通道脚踏开关*a通道光眼1
b通道脚踏开关互锁sb=b通道脚踏开关*b通道光眼1
(2) 根据输送带的逻辑动作顺序得到输送带运行的关系表达式:
脚踏踏下锁存变量js(l)=j↑*time1
脚踏踏下解锁变量js(u)= c1↑+tc1+e
time1为行李在x光机皮带中运行时间过长;
tc1表示行李进入x光机(行李离开光眼1后延时1秒);
↑表示一次脉冲触发信号;
当锁存变量js(l)为真时,中间变量“脚踏踏下”js常为1;当解锁变量js(u)为真时,js常为0;
发送行李进x光机锁存变量:
f(l)= js*c1*y2*y5*sb*p2*c2*key*e*time1
解锁变量f(u)=c1↑+tc1+e
当f(l)为真时,中间变量“发送行李进x光机”f常为1;当f(u)为真时,f常为0;
称重皮带运行:
p1=js*c1+f;
x光机皮带启动锁存变量
p2(l)=f;
p2(u)=c2+rest+e;
当p2(l)为真时,输出变量p2常为1(运行);当p2(u)为真时p2为0(停止);
注入皮带启动锁存变量:
p3(l)=f+y5*c2*win*key*e
p3(u)=c2+rest+e;
win为中间变量“有预留窗口”;当p3(l)为真时,输出变量p3常为1(运行);当p3(u)为真时p3为0(停止);
(3) 柜台指示灯表达式
cid指示灯(绿):
中间变量“慢闪条件”:gf=f(l)*y5↑
绿灯闪烁:g=慢闪中间点*gf
绿灯常亮:g=y5*key
x光机状态指示灯(白):
慢闪条件:wf=y3+y4
白灯慢速闪烁:w=wf*慢闪中间点*time1 *y0*key
白灯快速闪烁:w=time1*快闪中间电*y0* key
白灯常亮:w=x1x2x3x4*time1*wf* y0* key
安检指示灯(红):
红灯慢速闪烁:r=y7*慢闪中间点*e*y0* key
红灯快闪:r=e*快闪中间点*y0* key
红灯常亮:r=y7*e* y0* key
超重超长状态灯(黄)
行李发送时行李在称重皮带上3秒内仍没发送进x光机则判断行李超长
“行李超长”:tl=c2* p1* p2*计时3秒
超重信号tw由柜台电子称输出。
黄灯慢闪:yel=key *tw*慢闪中间点
黄灯常亮:yel= key *tl
(4) 据表达式画出梯形图,进行plc编程。