连云港一体化sto污水处理回用设备要点必看th
- 供应商
- 常州天环净化设备有限公司
- 认证
- 报价
- ¥6900.00元每件
- 品牌
- 天环净化设备
- 处理量
- 1-1000³/h
- 售卖地
- 全国
- 联系电话
- 13961410015
- 手机号
- 13961410015
- 经理
- 吕经理
- 所在地
- 常州市新北区薛家镇吕墅东路2号
- 更新时间
- 2025-01-09 09:00
目前,治理高浓度难降解有机废水水污染已经成为当前全球水资源可持续利用和国民经济可持续发展的重要战略目标。现在随着科技的发展,环境污水的种类以及排放量越来越多,成分更加复杂多变,含有许多难降解的有机物,对环境和人类健康具有巨大的危害,其中有些有机物具有致癌、致畸等作用,导致各种遗传病史。近年处理高浓度难降解有机废水技术已经取得了一定的进展,国内外的处理方法主要有氧化法、物化法和生物法等。
1、氧化技术
氧化技术被广泛应用于高浓度难降解有机废水的处理中,现代氧化技术主要包括湿式催化氧化法、电化学氧化法以及两种或两种以上氧化技术联合等手段进行处理废水的技术。
1.1 湿式催化氧化
湿式氧化主要是对高浓度难降解有机物废水进行预处理的一种方法。其主要原理是在高温加压条件下将氧气变为具有强氧化性的氧化剂将水中的有机物充分氧化,使高分子有机物分解为低分子化合物,或彻底氧化分解成co2和水。
湿式氧化具有二次污染低、适用范围广、可回收能量和有用物料、处理效率高、装置小等优点,可以应用于工业废水的治理中。缺点是该方法需要较高的温度和压力,因此需要耐高温高压、耐腐蚀的设备。
1.2 电化学催化氧化
电化学氧化法基本原理是使有机污染物在电极上发生氧化还原反应,反应降解为二氧化碳和水的主要作用分为两种,一种是有机物直接被电极,另外一种为电极首先与水作用生产具有强氧化性的羟基自由基,随后羟基自由基与有机污染物反应,达到降解的目的。研究表明电化学法处理有机污染物效果较好,可以对难生物消化的有机污染物进行预处理,将其转化为可生物降解的有机污染物后进行自降解。
该方法发生在水中,不需要另加催化剂,能有效避免二次污染,具有处理效率高、操作方便、条件温和等优点,同时还有凝聚、杀菌等作用。
2、物化法
常用的物理化学技术主要包括吸附法、膜处理技术等。
2.1 吸附法
根据吸附的主要原理可将其分为物理吸附和化学吸附。物理吸附石通过分子间作用力进行吸附,化学吸附是通过电子转移形成化学键或形成配位化合物的方式进行吸附。影响吸附效果的因素较多,其中常见的主要包括温度、吸附剂结构、吸附剂用量以及污染物性质等,生产应用的常用吸附剂包括活性炭、树脂、高分子吸附剂、活性炭纤维等。吸附法的优点是占地面积小、处理效果好、成本少,不会造成二次污染,但由于吸附剂的吸附容量是有限,再生能力弱,这些因素限制了该方法的实际应用。
2.2 膜分离技术
膜分离技术主要指通过借助膜的选择作用,在外界能量作用下对污水中的溶质和溶剂进行分离的技术手段,与常规分离方法相比,膜分离过程具有不污染环境,能耗低,效率高,工艺简单等优点。膜分离技术主要包括超滤(uf)、纳滤(nf)、反渗透(ro)和电渗析(electrodialysic)等。
已有的研究表明采用壳聚糖超滤膜处理印染废水能取得较好的处理效果,喻胜飞等人制备了用活性炭填充共混的改性壳聚糖超滤膜,研究表明所制得的壳聚糖活性炭共混超滤膜具有良好的分离脱色效果和良好的渗透性,能应用于染料污水处理中去,处理效果显著,降低率大90%以上。
3、生物法
高浓度难降解有机废水的生物处理技术研究已经取得较好的成果,有缺氧反硝化技术、厌氧水解酸化预处理技术等。
3.1 缺氧反硝化技术
缺氧反硝化技术是指在缺氧的条件下提供一定浓度的氮源给反硝化菌吸收,提高反硝化菌的降解效率的方法。与好氧条件相比,缺氧条件下污水的降解速率上升,c/n比对缺氧反硝化的降解效果有很大影响。只有适宜的c/n比,才能得到较好的效果。有研究运用缺氧反硝化技术处理焦化废水中的难降解有机物,结果表明焦化废水中含有的大量有毒难降解有机物在经过缺氧反硝化技术处理后几乎完全被降解,得到较好的效果。
3.2 厌氧水解酸化预处理技术
研究表明厌氧水解酸化预处理技术在处理含高浓度难降解有机物的废水中的应用广泛。它能将难降解的大分子有机物转化为易降解的小分子有机物,同时经预处理后水质稳定,改善废水的可生化性。有研究通过厌氧酸化预处理技术对焦化废水进行预处理,结果表明焦化废水中大部分的难降解有机物可被生物利用,提高了废水的可生化性。
污水污泥成分复杂,不仅含有重金属和持久性有机物等有毒有害物质,还含有多种病原体,若不能妥善处理,则会对环境造成二次污染。近年来,随着我国经济的高速发展和污水处理量的持续增加,每年产生的污水污泥量也急剧增加。据有关统计数据测算,2016年全国产生的城镇湿污泥4083万吨,2020年将达到5292万吨。
同时,餐厨垃圾是城市生活垃圾的主要组成之一,其产生量也在逐年增加。由前瞻产业研究院的统计数据得知,2015年全国产生餐厨垃圾9500万吨,到2016年全国餐厨垃圾产生量增至9700万吨,与污泥一样,餐厨垃圾成为了影响环境卫生和公众健康,甚至是威胁食品安全的又一难题。
2、污泥与餐厨垃圾单独厌氧消化难点
在废弃物的处理处置与资源化方法中,厌氧消化既可以实现其减容减量,降低或消除废弃物对环境的危害,又能获得沼气形式的清洁能源从而缓解当今的能源供需压力,此方法得到了国内外的青睐。对污水污泥与餐厨垃圾来说,两者均是常见的有机废弃物,然而其单独厌氧消化产沼气效果却并不十分理想。
污泥有机c含量较低,蛋白质含量较高,相对于有机c而言,蛋白质降解速率较慢,加之污泥中的大部分有机c为被细胞壁所包裹的微生物细胞物质,可生物降解能力较低,所以污泥单独厌氧消化时降解速度较慢,挥发性固体的去除率和产气量一般也较低。同时,由于污泥的c/n较低,厌氧消化时含n物质会较快地溶出而发生氨氮的积累,造成厌氧消化体系营养物质的配比失衡,进而导致厌氧消化进程的抑制。同时,污泥厌氧消化系统能否可持续运行还与其处理规模密切相关。这是因为污泥厌氧消化项目投资大,运行费用高,在规模经济的作用下,大型污泥厌氧消化项目有可能实现收益与投入的平衡,故停运率较低,而小规模污泥厌氧项目的收益不足以平衡投资和运行费用。离子交换技术在治理重金属工业废水的同时可实现金属的回收利用,具有较高的经济合理性,对增加可利用资源和改善环境质量具有十分重要的意义。
餐厨垃圾的主要组成成分为水分、碳水化合物、蛋白质、脂肪和盐分,并富含氮、磷、钙、钾等营养元素,其中有机成分在总固体中的含量很高,可高达95%以上。餐厨垃圾的c/n较高,易被生物降解,单独厌氧消化时速度较快。但由于产甲烷菌生长过程相对较缓慢,因此可能引起挥发性有机酸等中间代谢产物的毒性抑制,甚至导致厌氧消化系统的酸化失效。此外,由于餐厨垃圾固体含量高,流动性差,不易与厌氧微生物实现充分的混合,进而影响厌氧效果。
,单独对污泥和餐厨垃圾进行厌氧消化时,产沼效率和效果均不理想。
3、联合厌氧消化的可行性分析
为了较好解决两者分别进行单独厌氧消化时的一些问题,出现了将餐厨垃圾和污泥进行联合厌氧工艺,并在国内外引起了研究热潮。在国内,等都分别开展了分析研究,证实了污泥和餐厨垃圾联合厌氧消化的可行性,主要体现在以下几方面。
(1)污泥c/n比较低,降解速率慢,污泥单独厌氧发酵时易产生氨氮的抑制,而餐厨垃圾c/n则比较高,却会因餐厨垃圾厌氧消化速度与产甲烷菌生长速度不均衡而引起挥发性有机酸等中间代谢产物积累,甚至引起系统酸化。故两者联合厌氧,即可以调节c/n,提高厌氧系统的生物降解性,从而改善污泥的降解速率,又可以使产生的挥发性有机酸与氨氮等中间代谢产物进行部分中和反应,避免挥发性有机酸等中间代谢产物的积累,调节厌氧过程中的ph值,防止厌氧消化系统的酸化失效,维持厌氧系统的稳定运行。
(2)污泥中含有大量微生物,适合作为厌氧消化的菌种来源,而餐厨垃圾含有丰富的可溶醣,可生物降解性较好,非常适合作为厌氧消化的底物,故两者联合厌氧可以促进厌氧消化优势菌种的形成,有助于混合底物厌氧消化过程的进行,以缩短厌氧消化时间。
(3)餐厨垃圾和污泥进行联合厌氧消化可以补充各自成分中缺少的营养物质,使厌氧消化底物中的营养成分达到较好的平衡。
(4)餐厨垃圾和污泥联合厌氧消化可直接采用现有的污泥消化池,有利于降低成本,并为通过在污泥消化池中添加餐厨垃圾来扩大处理规模提供了便利条件,有利于促进规模经济效益的实现。而且根据已有研究成果,在联合厌氧消化工艺中,两种废弃物的厌氧消化性能得到了明显改善,沼气产量也得到了不同程度的提高,从而提高经济效益。
4、联合厌氧消化技术研究及应用
目前国内外已开展了一些污泥和餐厨垃圾联合厌氧消化技术的研究,但总体来看,国内外的相关报道并不多,且已有的研究主要集中在污泥和餐厨垃圾联合厌氧消化的技术、经济与工程可行性,以及ph值、温度、混合比例等工艺参数对联合厌氧消化反应过程的影响分析方面,而对联合厌氧消化的协同反应机理以及其中有机质降解调控机制尚缺乏深入系统的研究。尤其是在我国,重复性研究较多,而对拥有自有知识产权的、具有技术突破性的相关技术和设备研发力度不足。通过对国内外现有污泥和餐厨垃圾联合厌氧消化专利信息的查询信息,目前国内联合厌氧消化相关专利仅有60余项,可见目前国内拥有相关自有知识产权的数量还很有限,特别是与相关知识产权数量位居前列的日本、韩国和美国相比,更是存在较大差距。
在应用方面,一般认为现有的污泥处理设施(如污泥消化池)可直接应用于联合厌氧消化工艺,实现了设备共享。因此,污泥和餐厨垃圾的联合厌氧消化从技术和设施上可行。但整体而言,该技术目前主要限于实验室小规模运行,缺乏大规模应用的数据和经验,远未达到市场普遍应用的程度。
5、研究热点及方向
5.1 影响联合厌氧消化的参数
目前,国内外关于工艺参数对联合厌氧消化影响的研究报道还较少,并且主要集中在混合比例、水力停留时间、温度、ph值这4项参数上,而对固体停留时间、搅拌强度等其他重要参数研究较少。
5.1.1 混合比例
污泥和餐厨垃圾的混合比例不同会导致碳水化合物、蛋白质、脂肪含量的不同,进而对底物的消化过程、联合厌氧消化效率、沼气产量和甲烷含量产生重要影响。
beno等通过对餐厨垃圾、蔬菜垃圾与污水污泥在不同混合比例条件下消化效果的实验研究,发现餐厨垃圾和蔬菜垃圾进行单独厌氧消化时的沼气产量很低,且沼气中的甲烷含量也不高,只有5%左右;而添加一定量的污泥后,沼气产量明显增多,将两者分别与污泥按照77:23的比例混合时,酸抑制得以完全解除,沼气中的甲烷含量也上升至49%。在段妮娜等对脱水污泥、餐厨垃圾单独厌氧消化以及湿重混合比例分别为4:1、3:2和2:3条件下的五种厌氧消化系统进行了研究,考察了半连续干法厌氧消化的产气性能、有机质降解性能和系统稳定性。结果表明,固体停留时间为20d时,随着进料中餐厨垃圾所占比例的增大,混合物料的水解速率常数也随之增大,降解率随之提高,产气率和甲烷产率亦呈现上升趋势,同时系统内ph值、总碱度、总氨氮和游离氨氮呈下降趋势。
国内外同时对两者的佳混合比例开展了实验研究。namhyoheo等通过模拟食品废物和活性污泥混合物料的单级厌氧消化过程发现,在两种有机物混合比例为1:1、水力停留时间为10d的反应条件下,挥发性固体去除率达到高,为53.7%,cod也达到了佳去除效果,去除率可达53.6%。付胜涛等对剩余活性污泥与餐厨垃圾的联合厌氧消化系统开展了实验研究,发现当剩余活性污泥与餐厨垃圾进料总固体含量比为1:1时,ph值、碱度和氨氮要高于总固体含量比分别为3:1和1:3,而且在同一水力停留时间下运行,具有大的缓冲能力,稳定性和处理效果都比较理想。同样得到了1:1的佳混合比例结论,但是也有一些研究人员却得出不同的佳混合比例结论。高瑞丽等通过对35℃下厌氧消化系统的试验研究得出结论,即当剩余污泥与餐厨垃圾质量比为2:1时,沼气产量和甲烷含量均达到大值,分别比剩余污泥单独厌氧消化时的产气量提高了5倍和1.5倍。
从以上研究结果看,得出的污泥与餐厨垃圾佳混合比例存在差异,这主要是由作为研究对象的污泥与餐厨垃圾来源不同,其各自的c/n也不同,加之实验条件不同而造成的。