西门子6ES7216-2AD23-0XB8库存现货
- 供应商
- 浔之漫智控技术-西门子PLC代理商
- 认证
- 手机号
- 15221406036
- 经理
- 聂航
- 所在地
- 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
- 更新时间
- 2024-05-08 07:10
西门子6es7216-2ad23-0xb8库存现货
在风力发电系统中,变桨距控制技术关系到风力发电机组的安全可靠运行,影响风力机的使用寿命,通过控制桨距角使输出功率平稳、减小转矩振荡、减小机舱振荡,不但优化了输出功率,而且有效的降低的噪音,稳定发电机的输出功率,改善桨叶和整机的受力状况。变桨距风力发电机比定桨距风力发电机具有更好的风能捕捉特性,现代的大型风力发电机大多采用变桨距控制。本文针对国外某风电公司液压变桨距风力机,采用可编程控制器(plc)作为风力发电机的变桨距控制器。这种变桨控制器具有控制方式灵活,编程简单,抗干扰能力强等特点。本文介绍了液压变桨距系统的工作原理,设计了变桨控制器的软件系统。后在国外某风电公司风力发电机组上做了实验,验证了将该变桨距控制器可以在变桨距风力机上安全、稳定运行的。
随着风电技术的不断成熟与发展,变桨距风力发电机的优越性显得更加突出:既能提高风力机运行的可靠性,又能保证高的风能利用系数和不断优化的输出功率曲线。采用变桨距机构的风力机可使叶轮重量减轻,使整机的受力状况大为改善,使风电机组有可能在不同风速下始终保持佳转换效率,使输出功率大,从而提高系统性能。随着风电机组功率等级的增加,采用变桨距技术已是大势所趋。目前变桨执行机构主要有两种:液压变桨距和电动变桨距,按其控制方式可分为统一变桨和独立变桨两种。在统一变桨基础上发展起来的独立变桨距技术,每支叶片根据自己的控制规律独立地变化桨距角,可以有效解决桨叶和塔架等部件的载荷不均匀问题,具有结构紧凑简单、易于施加各种控制、可靠性高等优势,越来越受到国际风电市场的欢迎。
在变桨距系统中需要具有高可靠性的控制器,本文中采用了omron公司的cj1m系列可编程控制器作为变桨距系统的控制器,并设计了plc软件程序,在国外某风电公司风力发电机组上作了实验。
变桨距风力机及其控制方式
变桨距调速是现代风力发电机主要的调速方式之一,如图1所示为变桨距风力发电机的简图。调速装置通过增大桨距角的方式减小由于风速增大使叶轮转速加快的趋势。当风速增大时,变桨距液压缸动作,推动叶片向桨距角增大的方向转动使叶片吸收的风能减少,维持风轮运转在额定转速范围内。当风速减小时,实行相反操作,实现风轮吸收的功率能基本保持恒定。液压控制系统具有传动力矩大、重量轻、刚度大、定位jingque、液压执行机构动态响应速度快等优点,能够保证更加快速、准确地把叶片调节至预定节距。目前国内生产和运行的大型风力发电机的变距装置大多采用液压系统作为动力系统。
图1 变桨距风力发电机简图
如图2所示为变桨距控制器的原理框图。在发动机并入电网之前由速度控制器根据发动机的转速反馈信号进行变桨距控制,根据转速及风速信号来确定桨叶处于待机或顺桨位置;发动机并入电网之后,功率控制器起作用,功率调节器通常采用pi(或pid)控制,功率误差信号经过pi运算后得到桨距角位置。
图2 变桨距风力机控制框图
当风力机在停机状态时,桨距角处于90°的位置,这时气流对桨叶不产生转矩;当风力机由停机状态变为运行状态时,桨距角由90°以一定速度(约1°/s)减小到待机角度(本系统中为15°);若风速达到并网风速,桨距角继续减小到3°(桨距角在3°左右时具有佳风能吸收系数);发电机并上电网后,当风速小于额定风速时,使桨距角保持在3°不变;当风速高于额定风速时,根据功率反馈信号,控制器向比例阀输出-10v-+10v电压,控制比例阀输出流量的方向和大小。变桨距液压缸按比例阀输出的流量和方向来操纵叶片的桨距角,使输出功率维持在额定功率附近。若出现故障或有停机命令时,控制器将输出迅速顺桨命令,使得风力机能快速停机,顺桨速度可达20°/s。
变桨控制器的设计
◆系统的硬件构成
本文实验中采用国外某风电公司风力发电机组作为实验对象,其额定功率550kw,采用液压变桨系统,液压变桨系统原理图如图3所示。从图3中可以看出,通过改变液压比例阀的电压可以改变进桨或退桨速度,在风力机出现故障或紧急停机时,可控制电磁阀j-b闭合、j-a和j-c打开,使储压罐1中的液压油迅速进入变桨缸,推动桨叶达到顺桨位置(90°)。
图3 液压变桨距控制系统原理图
本系统中采用omron公司的cj1m系列plc。发电机的功率信号由高速功率变送器以模拟量的形式(0~10v对应功率0~800kw)输入到plc,桨距角反馈信号(0~10v对应桨距角0~90°)以模拟量的形式输入到plc的模拟输入单元;液压传感器1、2也要以模拟量的形式输入。在这里选用了4路模拟量的输入单元cj1w-ad041;模拟量输出单元选用cj1w-da021,输出信号为-10v~+10v,将信号输出到比例阀来控制进桨或退桨速度;为了测量发电机的转速,选用高速计数单元cjw-ct021,发电机的转速是通过检测与发电机相连的光电码盘,每转输出10个脉冲,输入给计数单元cjw-ct021。
◆系统的软件设计
本系统的主要功能都是由plc来实现的,当满足风力机起动条件时,plc发出指令使叶片桨距角从90°匀速减小;当发电机并网后plc根据反馈的功率进行功率调节,在额定风速之下保持较高的风能吸收系数,通过调整桨距角使输出功率保持在额定功率上。在有故障停机或急停信号时,plc控制电磁阀j-a和j-c打开,j-b关闭,使得叶片迅速变到桨距角为90°的位置。
风力机起动时变桨控制程序流程如图4所示。当风速高于起动风速时plc通过模拟输出单元向比例阀输出1.8v电压,使叶片以0.9°/s的速度变化到15°。此时,若发电机的转速大于800r/min或者转速持续一分钟大于700r/min,则桨叶继续进桨到3°位置。plc检测到高速计数单元的转速信号大于1000r/min时发出并网指令。若桨距角在到达3°后2分钟未并网则由模拟输出单元给比例阀输出-4.1v电压,使桨距角退到15°位置。
图4 风力机起动变桨控制程序流图
发电机并上电网后通过调节桨距角来调节发电机输出功率,功率调节程序流程图如图5所示。当实际功率大于额定功率时,plc的模拟输出单元cj1w-da021输出与功率偏差成比例的电压信号,并采用lmt指令使输出电压限制在-4.1v(对应变桨速度4.6°/s)以内。当功率偏差小于零时需要进桨来增大功率,进桨时给比例阀输出的大电压为1.8v(对应变桨速度0.9°/s)。为了防止频繁的往复变桨,在功率偏差在±10kw时不进行变桨。
图5 变桨调功程序流程图
在变桨距控制系统中,高风速段的变桨距调节功率是非常重要的部分,若退桨速度过慢则会出现过功率或过电流现象,甚至会烧毁发电机;若桨距调节速度过快,不但会出现过调节现象,使输出功率波动较大,而且会缩短变桨缸和变桨轴承的使用寿命。会影响发电机的输出功率,使发电量降低。在本系统中在过功率退桨和欠功率进桨时采用不同的变桨速度。退桨速度较进桨速度大,这样可以防止在大的阵风时出现发电机功率过高现象。
1.公司介绍
本项目的设备制造商为高安公司,该公司为规模较大的化纤机械生产厂,fa产品有着广泛的应用,在行业中也有一定的度。该设备用于5000吨纤维后处理生产线项目,其业主方为某日资化纤厂。
2.设备说明
该设备用于化纤多次拉伸、卷曲前处理生产,主要由导丝架、八棍导丝机、热水槽、牵伸机、水浴槽、第二牵伸机、蒸汽箱、第三牵伸机、叠丝机、张力架、卷曲机、卷曲侧板电机、油泵电机、振动电机、循环水泵、振动检测等设备构成。i/o控制规模为103点,其中开关量输入点为61点,开关量输出点为39点,模拟量输入点为3点。主要控制要求为:化纤丝的速度、牵伸比、蒸汽及水温、相关的连锁逻辑控制等。本系统控制的关键是要保证导丝、一牵、二牵、三牵、卷曲五台电机的速度同步。
3.系统配置
如图,系统采用三菱公司的q系列plc作为主控制器,传动控制为艾默生公司的ev2000系列变频器,人机界面为f940got。
系统主要配置如下:
●主控制器:q00cpu:速度和牵伸比给定,通过i/o模块,检测现场各机台急停,限位等开关量及模拟量信号,完成连锁控制及报警功能。
●输入模块:qx40:完成现场的开关量控制采集,
●输出模块:qy10:完成开关量输出。
●模块量输入:q64ad:以完成现场的模拟量检测。
●串行通讯模块::构成变频器通迅链路。
●传动驱动单元:艾默生公司的ev2000系列变频器。
鉴于篇幅的原因,本文主要描述系统控制的关键设计和实现,即保证导丝、一牵、二牵、三牵、卷曲五台电机的速度同步。客户基于成本的因素,传动驱动单元选用艾默生公司的ev2000系列变频器,并要求主控制器和其构成一个以rs485为通讯介质的低速廉价通讯链路。尽管导丝、一牵、二牵、三牵、卷曲5台变频器采用共用直流母线运行方式,并安装增量式编码器构成转速闭环以提高速度精度,卷曲机变频器还外加张力传感器以稳定控制拉伸张力,提高纤维质量,但是在设备起停过程特别是在运行过程中调整运行速度和牵伸比等工艺参数时低速通讯链路的实时性的问题就表现出来了。
在设计上,虽然一个通讯模块可以组成485网络,但因为通信量很大,我们必须实时发送电机的速度指令及起停信息,同时还要不断读取变频器的工作电压、电流、频率等参数,所以如果采用一块模块的话,通信周期将增大,也就达不到实时的作用。所以我们选用两块485通讯模块,即四个通讯口同时对一牵、二牵、三牵、卷曲四台变频进行通讯,而导丝和一牵共用一个通讯口,在下一周期通讯。考虑到通讯协议帧长度长为18个字节,在19200bit/s传输速率下,各速度指令响应的大时差为20ms左右,当大车速为200m/min时,尽管导丝略有滞后,但在工艺上是可以接受的。该方案可以有效地解决速度指令的同步能力,实现开车起步和停车过程中按指令同步升降速以及运行中速度调整时五台电机速度的同步和纤维拉伸张力的均匀。
4.调试情况和体会
在实际调试过程中,系统基本符合我们预想。但在通讯调试中,我们发现q系列plc在搭载多通讯模块系统时,通讯的稳定性和plc的扫描周期的长短有关。随着功能的不断增强,程序的不断完善,扫描周期也随之加大,当大扫描周期大于25ms时,通讯开始有不稳定现象出现。
现象:我们用的专用通讯指令来接受通讯数据,当扫描周期大于25ms时,在同时通讯的4个口中,排在程序的后一个口偶尔会有通讯错误,当接受标志位已跳变为on,表示数据已接受完毕,但接受数据区中却无数据。我们对同时通讯的四个口的程序次序颠倒过来发现情况依旧,错误只发生在次序排在后的一个口。
分析原因:我们认为是通讯时序出现了问题,系统接受标志位的跳变和系统数据的传递不同步,即系统内部通讯标志建立时,通讯缓冲区的数据尚未来得及传送完毕。故我们判断扫描周期延长会影响系统通讯的时序。解决办法:精简程序来缩短扫描周期或更换高速plc。但由于本系统程序量较大,后为了保证系统的可靠性我们将cpu从q00更换为q02,提高了系统处理速度,把扫描周期降低至10ms以下,问题得以解决。
图1 远程监控画面
3.1脉冲清灰
脉冲清灰袋式除尘器是目前国内外应用广泛的一种高效清灰袋式除尘器。脉冲清灰系统是袋式除尘器的核心,也是其技术的关键所在,其设计必须根据工艺的实际情况进行恰当的配置,这样才能保证除尘器高效的运行。我公司根据实际工况,采用plc自动控制低压脉冲离线清灰,主要是定时、定阻和混合控制方式,我们多年来根据现场使用情况所总结出的经验,以定时为主,定阻、混合为辅的方式。
3.1.1定时清灰
定时离线清灰要求除尘器设计为多室组合的形式,实现逐室清灰,当某过滤室需要清灰时,首先要控制挡板使这个气室不再进行烟气过滤,即过滤室与主气流隔离开来,过滤室被隔离是通过设置在出气口的提升阀来实现的。采用定时离线清灰,可设置脉冲宽度和脉冲间隔时间。当除尘器工作一段时间后,滤袋外侧的灰层厚度增加,其阻力亦增大,此时应对滤袋进行清灰。脉冲清灰过程中,每台除尘器的每个过滤室上都设置了多个脉冲阀,以压缩空气为清灰动力,由plc发出控制信号,依次触发各个脉冲阀,在瞬间释放低压空气。由于动能与势能的共同作用,由脉冲阀瞬间喷吹的低压空气,使相应等待清灰的一组滤袋突然膨胀和振动,抖落积附在滤袋外侧的灰尘,以恢复滤袋的除尘功能,使除尘器自始至终保持良好的工作状态。
3.1.2定阻清灰
定阻清灰是通过在除尘器进出口的压差变送器来控制的,当压差变送器的检测值大于设定值时,则执行定阻自动清灰。
3.1.3混合清灰
清灰的目的是清除布袋的灰尘,使布袋粉尘保持合适的厚度,除尘器有较高的除尘效率和较低的能耗。早期的除尘系统风量一般恒定,常用的清灰控制方式有定时清灰和定阻清灰。定时清灰是指按照预先设定的清灰周期和脉冲间隔控制清灰机构动作,属于开环控制,不考虑除尘器的实际阻力。若时间设置不合理,会使除尘效率太低或系统能耗太高。定阻清灰是根据除尘器实际阻力来控制清灰。通常设定一个目标阻力,当实际阻力高于目标阻力一定范围时开始清灰,直到实际阻力小于目标阻力一定范围时停止清灰。这种方式相比定时清灰实现了阻力的简单闭环控制,因此在风量恒定的除尘系统中应用较为广泛。由于本系统中采用了变频调速,除尘风量不再恒定,定时清灰和定阻清灰都不适用,经分析和试验,系统采用了定时定阻混合清灰控制策略。当运行压差小于设定值时,按时间设定启动清灰,当运行压差大于设定值时,则强行启动清灰程序。
除尘系统的压差值进入plc的模拟量输入模块,当除尘系统投入正常运行后;plc读取除尘系统的进出口压差信号跟预先设定好的参数实时比较来确定布袋是否需要清灰,使除尘器运行在佳状态。
3.2在线检修
除尘器正常工作是采用离线清灰,需要检修时可以分室进行而不影响除尘器整体的正常工作。
3.3振打与反吹
振打清灰是除尘器的主要过程,其目的是防止灰斗的堵塞。振打周期对其影响也很大,其控制可分为手动振打和定时振打。在振打力度与均匀性都满足要求时,振打频率是否合理,对除尘器灰斗的堵塞影响极大。因此,选择合理的振打周期,将有助于更好地防止灰斗的堵塞。
3.4卸灰与输灰
除尘器的卸灰方式可分为定时自动卸灰;高、低料位自动卸灰。我公司采用的是定时输卸灰和料位卸灰方式。所谓高料位卸灰指的是当低压控制系统检测到某一灰斗高料位信号时,延时一定时间后启动相应的卸灰装置;当料位低于低料位时停止相应的卸灰装置。为避免料位计损坏或误报而导致灰斗堵灰,又加入定时自动卸灰功能,以保证系统能够进行自动卸灰。在定时自动卸灰方式下,每个室顺序依次卸灰,循环工作,避免了多室同时工作,致使输灰机阻塞等现象的事情发生,有效的保证除尘系统的正常运行。
3.5温度检测与控制
温度采集处理单元由温度传感器、热电阻全隔离信号调理器等组成。温度传感器采用铂热电阻pt100,它将进出口烟气的温度信号转换为电阻值,经热电阻全隔离信号调理器转换成标准的4~20ma电流信号,送到plc的模拟量输入模块中,供plc分析处理用。
在生产工况稳定时进入除尘器的烟气温度在100~180℃之间。由于烟气进入除尘器的温度低于70℃时,容易造成烟气中粉尘粘在滤袋表面,形成一层不透气且不易清除的结块,使滤袋失效;而进入除尘器的烟气温度高于220℃时,会造成滤袋使用寿命降低或烧坏滤袋,因此,除尘器另设两只冷风阀,当进气温度达180℃时开始报警要求调整工况,同时控制打开一个冷风阀输入冷空气降温;当进气温度达200℃,同时打开两个冷风阀输入冷空气降温;此外,在设计中增加了旁路系统,主要是考虑系统生产时工况不稳定等因素导致入口烟气温度可能超过滤袋的允许范围,确保滤袋安全。在这时,要采取紧急措施,走旁路系统,避免影响整个系统的正常生产。
3.6破袋检漏
操作人员发现超标报警后,将控制柜上的清灰选择转换开关扳至“0”位置,终止清灰控制程序,然后单击控制柜上的滤袋破损检测按钮,监控机向plc发布检漏指令,plc接到命令后启动除尘器检漏程序,使除尘器内提升阀按预定的节奏逐个依次关闭开启,如果当一个除尘室中的提升阀被关闭时,相应除尘器的排放浓度pd1明显减少,说明此除尘室中有破袋现象,plc将向环保中心发送破损室号。可及时有效地发现哪个除尘过滤室有破袋现象,及时更换,保证整个除尘系统的正常运行。
3.7监测措施
为了保证除尘系统的正常运行,提高除尘效率,节省能源,在系统上设置一些必要的仪表监测措施,设计有除尘器进出口压差;除尘器进、出口温度以及风机的一些检测点(风机轴承、电机轴承、定子温度,风机进出口烟气压力、风机轴承振动、冷却水压力、压缩空气压力等)。
四、应用与维护
由于采用了先进的plc,系统控制结构更为合理,控制性能明显提高,系统获得了更大的可控性和可扩展性。同时结合先进的控制算法,使得布袋使用寿命明显增长,气源的利用率得以提高,整个系统的运营成本大幅下降,这一切使得布袋除尘器在工业领域具有了更加光明的应用前景。
4.1控制方式
除尘系统控制柜体设备与现场设备的距离较远,一般需两地控制。因此,我们增设了就地现场操作箱,便于设备的调试与检修;就地现场操作包括除尘系统上的所有提升阀、脉冲阀、螺旋输灰电机、卸灰阀以及振打器等等。当设备切换至远程状态时一般为plc自动控制和计算机操作,无需人员干预。
4.2低压控制柜可靠性设计
应用于工业现场的控制设备,提高其可靠性水平是十分必要的,低压控制设备的可靠性设计涉及电器元件的选型、程序编制、结构和总体设计等各个方面。我们在低压程控柜的设计过程中采用了屏蔽、隔离、接地、风冷等多项可靠保证措施,大大提高了设备的可靠性水平。
4.3控制系统维护
plc对物理环境要求高,保证通风与散热。plc工作环境温度为0~40℃,环境温度较高时,应打开plc柜顶部的冷却风扇,以使得plc工作在适当的环境;控制柜安装场所不得有剧烈震动,不得有导电、易爆炸、有腐蚀的气体尘埃、相对湿度不得超过85%、更不得有凝结水,否则必须加相应的防范措施。
五、系统特点
5.1控制系统采用国外先进plc产品,可靠性高、通用性强;
5.2控制系统采用了模块式组合结构,并集开关量控制和模拟量控制处理于一体,使用方便,维护量少;
5.3控制系统对除尘器清灰、输卸灰、压差、温度等运行参数能实时监控;并可以与中心计算机实现远程通讯,进行远程控制。
先进的技术使得控制系统自动化程度高,操作使用方便。
六、结束语
plc的引进和利用,是现代工业控制领域提高生产效率和管理水平的必然趋势,采用软硬结合的控制方案则是充分利用系统资源,提高系统效率的有效手段,本系统就是在这样的指导思想下进行设计的。现场实际运行表明,本系统稳定可靠,达到了设计要求,具有自动化程度高,操作使用方便等优点。我们相信,技术先进、功能强大的plc在ly低压长袋离线除尘器控制系统上的应用会更加广泛。同时,该系统也适用于工业自动化生产线的控制。