吉林白城市西门子(授权)总代理---东北地区西门子(授权)一级经销商
- 供应商
- 广东湘恒智能科技有限公司
- 认证
- 西门子PLC
- 西门子伺服电机
- 西门子触摸屏
- 西门子电缆
- 西门子变频器
- 西门子模块
- 联系电话
- 13510737515
- 手机号
- 13185520415
- 联系人
- 董海波
- 所在地
- 惠州大亚湾澳头石化大道中480号太东天地花园2栋二单元9层01号房(仅限办公)
- 更新时间
- 2024-12-23 08:00
戴克斯特拉算法(dijkstra’salgorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源zui短路径问题,算法zui终得到一个zui短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。
该算法的输入包含了一个有权重的有向图 g,以及g中的一个来源顶点 s。我们以 v 表示 g中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 e表示g中所有边的集合,而边的权重则由权重函数 w: e → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v的非负权重(weight)。边的权重可以想像成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 v中有顶点 s 及 t,dijkstra 算法可以找到 s 到t的zui低权重路径(例如,zui短路径)。这个算法也可以在一个图中,找到从一个顶点 s到任何其他顶点的zui短路径。对于不含负权的有向图,dijkstra算法是目前已知的zui快的单源zui短路径算法。
算法步骤:
1. 初始时令 s={v0},t={其余顶点},t中顶点对应的距离值,若存在
2. 从t中选取一个其距离值为zui小的顶点w且不在s中,加入s。
3. 对其余t中顶点的距离值进行修改:若加进w作中间顶点,从v0到vi的距离值缩短,则修改此距离值。
4.重复上述步骤2、3,直到s中包含所有顶点,即w=vi为止。
动态规划(dynamicprogramming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和zui优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。
动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。通常许多子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量:一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个子问题解之时直接查表。这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。
关于动态规划zui经典的问题当属背包问题。
算法步骤:
1.zui优子结构性质。如果问题的zui优解所包含的子问题的解也是zui优的,我们就称该问题具有zui优子结构性质(即满足zui优化原理)。zui优子结构性质为动态规划算法解决问题提供了重要线索。
2.子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。
朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下,如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。
朴素贝叶斯分类器依靠jingque的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用zui大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。
尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果