6ES7223-1BM22-0XA8库存充足
- 供应商
- 浔之漫智控技术-西门子PLC代理商
- 认证
- 手机号
- 15221406036
- 经理
- 聂航
- 所在地
- 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
- 更新时间
- 2024-05-08 07:10
6es7223-1bm22-0xa8库存充足
1 概述
随着机电一体化技术的发展,对系统的可靠性要求越来越高,plc具有控制可靠、组态灵活、体积小、功能强、速度快、扩展性好、维修方便等特点,在机床电气控制中获得了广泛的应用。本文简要介绍了采用f1—40mr型plc改造卧式镗床电气控制线路的应用实例。
2卧式镗床继电器控制工作原理简介
图1是卧式镗床继电器控制电路图。zqa、fqa分别是正转、反转起动按钮,zsa、fsa分别是正转、反转点动按钮;ta是主轴停止按钮。卧式镗床的主轴电机是双速异步电动机,中间继电器zj和fj控制主轴电机的启动和停止,接触器zc和fc控制主轴电机的正反转;接触器1dsc、2dsc和时间继电器sj控制主轴电机的变速,接触器dc用来短接串在定子回路的制动电阻。1jpk、2jpk和1zpk、2zpk是变速操纵盘上的限位开关,1hkk、2hkk是主轴进刀与工作台移动互锁限位开关。sdj为速度继电器,gsk控制主轴高速运转,热继电器rj在电机过热时断开供电线路。
图1 卧式镗床继电器控制电路图
3用plc改造卧式镗床的电气控制线路
根据原有的继电器控制电路图来设计plc控制梯形图,以实现卧式镗床的plc控制改造。这种方法没有改变系统的外部特性,但却克服了机械动作时中间继电器可靠性低、维修困难等缺点。对于操作人员来说,除了控制系统的可靠性tigao以外,改造前后对系统的操作没有什么区别,它们不用改变长期形成的操作习惯。这种设计方法一般不需要改动控制面板和它上面的器件,因此可以减少硬件改造的费用和工作量。
图2和图3分别是实现与图1相同功能的plc电气控制系统的外部接线图和梯形图
图2 plc电气控制系统外部接线图
图3 plc电气控制系统梯形图
在控制主轴电机正反转的继电器电路中,为了防止控制正反转的两个接触器(如图1中的zc和fc)同时动作造成三相电源短路,设置了接线复杂的连锁电路,即将某一接触器的常闭触点与另一个接触器的线圈相串联,在梯形图中也设置了相应的连锁电路,但是它只能保证plc输出模块上两个对应的硬件继电器不同时动作。如果因主电路电流过大或接触器质量不好,某一接触器的主触头被断开主电路时产生的电弧熔焊,使其线圈断电后主触间仍然接通,这时如果另一接触器的线圈通电,仍将会造成三相电源短路事故。为了防止出现这种情况,图2中在plc外部增设了连锁电路。假设接触器zc主触点被电弧熔焊,这时与fc线圈串联的zc辅助常闭触点断开,因此fc的线圈不可能得电,进一步从硬件上tigao系统的可靠性。
图1中zc、fc、1dsc、2dsc都要受ta、1zpk、1jpk、zc和fc的触点并联电路的控制,在梯形图中设置了与上述并联控制电路对应的辅助继电器m202,它类似于图1继电器电路中的中间继电器。
1 引言
在汽车、飞机和工程机械等设备上的液压传动系统的管路受到不同工况的振动冲击。随着人们对产品可靠性要求的tigao,以及各种行业发展的需要,管路的抗冲击和抗挠曲性能将越来越受到重视,因而管路的抗冲击性能成为反映其质量和可靠性的重要指标。随着我国汽车工业的迅速发展,需要液压脉冲设备来进行检测软管在不同环境和工况下的性能。
液压脉冲试验机用于汽车刹车管、燃油管、转向管、冷却水管、散热软管和暖风软管等软管脉冲压力的寿命试验,该试验机能方便、稳定的检测出设备所用的软管是否符合标准的要求。
液压脉冲试验机控制系统是基于plc的二级混合控制系统,下位机采用rockwellautomation的slc500作为核心处理器的实时控制器,上位机ipc利用labview软件编写的人机界面具有易于操作,便于维护等特点。通过以太网将上位机和下位机连接,使该脉冲试验机具有很好的实时性,抗干扰性强,更加稳定可靠。
2 试验系统要求
该试验系统要求试验样管在-40~160℃,压力10~30mpa的不同环境条件下进行寿命试验,将新样管通过压力冲击和挠曲试验直至爆破来测试产品是否符合相关标准要求。
液压脉冲试验机是主要通过液压伺服系统来控制压力和脉冲波形。波形误差、压力施加方式、响应时间和精度直接影响试验系统的准确性,相关标准对要求波形的控制误差为2%。由于采集和处理的数据需要实时上传到上位机,这就要求控制系统数据传输速度快、抗干扰能力强,从而保证试验系统具有很好的实时波形曲线。在试验过程中,试验样管会因为变形、膨胀引起管径和液压伺服系统参数的变化,控制系统如何根据这些变量来调节,其硬件和软件设计具有较高的难度。
3 试验方法
脉冲试验机主要有压力冲击和挠曲试验两种方法,两种方法同时进行试验,很好地模拟了不同环境和工况条件下,汽车行驶的实际路面状况。
3.1 压力冲击
液压脉冲试验机压力通过控制脉冲波形来实现。控制波形主要分梯形波、凸字波、正弦波和方波四种。控制系统可以根据试验工艺需要从上位机选择预定的脉冲波形来达到试验的目的,用户可以根据液压伺服系统结构自由选择间隔卸压。对存在间隔卸压的波形,如梯形波和凸字波,在脉冲的波谷的时候开启卸压阀使介质可以在试验样管中流动。波形的具体要求如图1所示。
图1 梯形波曲线要求
(1)梯形波(方波、三角波)。梯形波(方波、三角波)参照德国标准tl82415要求为在t1段升压速率要求在1mpa/s~300mpa/s之间可调;在t2段要求保压时间在0~ns可设,n为大于0的任意值;在t3段要求与t1段基本对称;在t4段要求保压时间在0~ns可设,n为大于0的任意值;pmin控制在0~10%pmax;pmax根据不同的管有不同的要求,目前不会大于60mpa。
图2 凸字波形曲线要求
(2)凸字波。参见图2,凸字波的要求是在t1段升压速率要求在100mpa/s,t1=2s;在t2段要求保压时间在0~ns可设,n为大于0的任意值,一般也设定为2s;在t3段要求与t1段基本对称;在t4段要求保压时间在0~ns可设,n为大于0的任意值,一般也设定为4s;pmin=0;个压力台阶=0.35mpa;高压力=1.05mpa。
(3) 正弦波(半正弦或完整正弦)。正弦波比较难实现,在实际试验中主要是通过plc的专用凸轮指令产生凸轮波形来模拟间隔的正弦半波。完整正弦波是指在封闭状态下做的。频率要求为1s画出一个完整的正弦波,波峰值大60mpa,波谷值为0。半正弦波按照0.5s画完一个半正弦,其他0.5s为卸压时间来设计,卸压时压力为0。
3.2 挠曲试验
控制系统控制一个伺服油缸y方向的上下振动,利用变频器控制电动机带动试验样管旋转,控制x方向挠曲速度和角度,形成振动和挠曲的二维组合。挠曲试验的频率大为17hz,大振幅为±35mm,在大振动频率时的振幅为±4mm。
4 控制系统硬件设计
控制系统由上位机(ipc)、下位机(plc)和外部电路控制组成,通过以太网将上位机和下位机连接,完成液压伺服系统。环境条件变化由仪表控制,通过rs485与上位机通信,控制系统框图如图3所示。
图3 液压脉冲试验机控制系统框图
4.1 压力变送器和ad模块
压力变送器位于增压器出口,量程0~30mpa,输出4-20ma,频响200hz。压力变送器的精度为满量程的0.75%,为了得到更高的满量程精度,液压系统采用了切换两个压力变送器的组合方式。所有传感器的采样频率为500hz,压力采样相对变送器每个周期有3-5个16位数据,使于平滑处理,tigao测量精度,以保证±2%的误差要求。
系统采用4路差分输入16位ad模块,输入电流4-20ma,全部转换时间600μs,上传时间1ms,采样频率相当于500hz;2路电压/电流输出,输出±10v,全部转换时间600μs,下传时间1ms。伺服阀按100hz进行调节即为10ms,pid调节算法时间约为0.6ms,pid指令执行时间少于400μs,即可实现5次pid调节,实时性和稳定性有保证。
4.2 液压伺服系统控制
液压伺服系统的响应频率和调节精度完全取决于系统的固有频率和谐振频率,伺服系统仿真分析将成为伺服系统设计的关键。限于篇幅,本文省略液压伺服系统的相关内容。
控制系统通过ao模块输出0~10v的电压信号,经过伺服放大器放大来控制伺服阀的开度,伺服阀开度的大小决定了液体的liuliang,从而来控制试验样管所受压力大小。液压伺服系统是使系统的输出量如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点。
伺服控制采用ad-da方法,使用压力变送器作反馈元件。伺服刷新周期1000μs。伺服系统两个伺服阀控制方法相同,仅压力不同。
4.3 高速计数器和其它电路
hsc模块提供4路50khz高速输入脉冲计数,该模块与挠曲电动机的编码器相连。挠曲电动机控制挠曲速度和角度。系统的di和do模块用于开关量控制,如油泵、液位、液压阀、变频器、介质的温度与搅拌、液压系统保护和报警等控制。
4.4 以太网
slc500/l533处理器自带有以太网口,相对于rs232/rs485以太网具有较高的可靠性而且传输速率快,数据传输速率达到10~100mbps,因此本系统通过以太网将上位机和下位机连接,减少数据传输迟滞对波形曲线的影响,使脉冲试验机具有很好的实时性,抗干扰性强,更加稳定可靠。
5 控制系统软件设计
软件设计的主要难点就是实时脉冲波形曲线的控制,即始终要保证实际波形曲线要处在给定波形曲线的上下允许误差范围内,如图4所示。
图4 实时波形曲线
5.1 上位机软件
整个控制系统采用labview来编程实现人机界面,通过以太网实现通信,将试验指令下传给下位机,然后接受下位机的上传数据。labview是一种图形化的编程语言,它是一个开放性的环境,用于快速创建灵活的、可升级的测试、测量和控制应用程序。通过labview可以很方便地采集到实际信号,并对其进行分析得出有用信息,然后将测量结果通过直观化的显示、报告和网络实现共享。
上位机负责整个控制软件的界面设计,包括动态显示温度、压力、振幅、转速等数据,以数值和曲线形式显示。试验数据保存在数据库中,包括设备硬件信息(液压系统能力,增压器比例,伺服阀型号等),当前试验信息(试验标准,试件规格、试验参数)。用户可以将保存在数据库中的数据提取出来,将测量的试验数据生成报表输出。所有波形全部保存在相应的波形图文件,波形数据中包含介质温度、环境温度、给定压力波形和实际压力波形数据。软件可以实现历史曲线的重放并可以改变重放的速度,以便用户迅速浏览脉冲的历史曲线。控制系统还实现了报警功能,若监测油箱温度、介质温度、环境温度、液位浮球、破裂浮球、过滤器堵塞、缸到头,出现报警立即输出报警信号。上位机负责采用rs485通信协议与环境仪表控制连接,环境温度用独立的环境箱控制,上位机可以写入温度控制值或者温度控制曲线,实时读取环境箱温度。
5.2 下位机软件
下位机负责整个控制软件的实时伺服控制和逻辑控制设计,包括接收上位机的给定压力波形曲线、挠曲试验的振动频率、振幅和挠曲的速度和角度,完成两个伺服油缸和挠曲电动机三个闭环控制系统的调节,以及开关量的逻辑控制。此处省略逻辑控制功能。
由于系统响应时间至少要4个系统时间常数,下位机根据给定压力波形曲线通过控制伺服油缸和增压器,保证压力上升斜坡时间小于50ms,调节周期5-10ms,界面波形显示滞后约1个实时波形。
脉冲给定压力曲线与伺服信号调节受到试验压力大小、试验样管膨胀量大小、增压器比例、伺服阀放大器增益大小等因素影响。下位机应根据前述影响因素自动改变给定压力曲线和放大器增益,通过控制伺服阀和增压器实现对脉冲压力的控制。通过ad模块采样频率和伺服阀响应频率的佳匹配,以保证实际压力曲线和设定压力曲线误差不超过2%。通过以太网将控制系统实时数据上传上位机,实现压力波形曲线的实时监控,保证了控制系统的实时性、高可靠性。
6 结束语
由于此试验系统比较复杂,控制系统和液压伺服系统先在实验室进行实物仿真,然后在试验系统联调时解决系统的机电耦合问题。目前控制系统实验室实物仿真已取得初步成果,初步解决ad模块采样频率和伺服阀响应频率的匹配、分级改变给定压力曲线和放大器增益等问题,还有待于试验系统联调时检验实际压力曲线和设定压力曲线误差是否符合相关标准要求
1 引言
当前我国机械制造业大量的通用设备在发展现代机械自动化技术时,可以有多种技术路线选择。应用微电子技术改造这些已有通用设备,比如用数显、数控装置改造通用设备,tigao单机自动化程度;用可编程序控制器改造通用机床、专用机床、组合机床及自动设备与半自动设备组成的生产线,这样可以把计算机功能完备、编程灵活、适应性强的优点和继电器控制简单、抗干扰能力强、价格便宜等优点结合起来,这是一条低成本、高效益,符合我国国情的机械自动化技术发展应用新途径。
2 自动剪板机工艺介绍
剪板机应用于许多金属加工和薄板开料操作,在设计剪板机之前必须对几个因素进行考虑,包括剪板机的剪切能力、产率增强选件和安全性。
剪板机类型由许多因素决定,诸如剪板机可处理材料的长度、厚度和种类。剪板机可以按剪切形式及其驱动系统进行分类,有两种结构形式常用于电动龙门剪床:闸式(也叫滑块式)和摆式。
闸式剪板机利用驱动系统操纵动刀片向下移动到一定的位置,使动刀片在整个行程内几乎与定刀片保持平行。为了使刀架片横梁在相互移动的过程保持合适的状态,闸式剪板机需要一个滑块导向系统。摆式剪板机驱动系统中有一个用来操纵动刀片,使动刀片依附于滚柱轴承向下回转。这种结构不再需要利用凹字形导向条或滑道使刀片在剪切过程保持合适的姿势。
3 系统分析
3.1 控制要求
上电后,检测各工作机构的状态,控制各工作机构处于初始位置;进料,由控制系统控制进料机构将待剪板料自动输送到位;定剪切尺寸,采用伺服电机控制挡料器位置保证jingque的剪切尺寸,其尺寸可是定值也可以设置为循环变动值;压紧和剪切,待剪板料长度达到设定值后由主电动机带动压料器和剪切刀具,先压紧板料,然后剪断板料;送料车的运行,包括卸载后自动返回;剪切板料的尺寸设定、自动计数及每车板料数的预设定;具备断电保护和来电恢复功能;能实现加工过程自动控制,加工参数显示,系统检测。9.保证板料加工精度、加工效率和安全可靠性。10.具有良好的人机操作界面。
3.2 剪板机结构原理
自动剪板机是一种jingque控制板材加工尺寸,将大块金属板材进行自动循环剪切加工,并由送料车运送到下一工序的自动化加工设备,其结构及原理如图1所示。
图1 自动剪板机原理图
3.3 控制系统的结构
系统设置了7个限位开关,分别用于检测各部分的工作状态。其中,sq1检测待剪板料是否被输送到位。sq2、sq3分别检测压块b的状态,检测压块是否压紧已到位的板料;sq4检测剪切刀a的状态;sq7为光电接近开关,检测板料是否被剪断落入小车;sq5用于检测小车是否到位;sq6用于判断小车是否空载。送料机构e、压块b、剪切刀a和送料小车分别由四台电动机拖动。系统未动做时,压块及剪切刀的限位开关sq2、sq3和sq4均断开,sq1、sq7也是断开的。
3.4 自动剪板机工作原理
当系统启动时,输入板料加工尺寸、加工数量等参数,按下自动开关,系统自动运行。
首先检查限位开关sq6的状态,若小车空载, 系统开始工作,起动送料小车。小车运行到位,限位开关sq5闭合,小车停车;起动送料机构e 带动板料c向右移动。当板料碰到行程开关sq1时,送料停止同时制动器松开、电磁离合器结合,主电动机通过传动机构工作;压块电机启动,使压块b压下,压块上限开关sq2闭合。当压块到位,板料压紧时, 压块下限开关sq3闭合;剪切刀电动机起动, 控制剪刀下落。此时,sq4闭合, 直到把板料剪断,板料落入小车;当小车上的板料够数时,起动小车控制电动机, 带动小车右行,将切好的板料送至下一工序;卸下后, 再起动小车左行,重新返回剪板机下, 开始下一车的工作循环。板料的长度l可根据需要进行调整,每一车板料的数量可预先设定。
4 plc控制系统设计
4.1 自动剪板机系统设计
为实现自动化必须根据板材自动jingque剪切加工的工作特点及动作要求进行设计,因此本方案采用了可编程控制器来实现对自动剪板机的控制,设计方案如图2所示。
图2 总体设计方案简图
4.2 系统主电路设计
(1)设计进料机构e:用交流电机带动送料皮带,传送皮带送料只向一个方向运动,只要求电机向一个方向旋转即可,轻负载小工率电动机可直接起动,用熔断器和热继电器作短路、过载保护。使待剪板料自动快速稳定地输送到剪切位置。
(2)设计压料机构b:压块b的作用是压紧板料,以利于剪切刀切断板料,压块b又上升和下降两种运动,要求带动压块的电动机具有正反转运动,控制电路有联锁保护、熔断器和热继电器短路及过载保护。
(3)剪切刀:剪切刀有两种运动,下行切断板料,然后上升复位,带动剪切刀机构的电动机也应具有正反转,用熔断器和热继电器作短路及过载保护。
根据电机控制要求,其电机正反转程序流程框图如图3所示。
图3 电机正反转程序流程框图
4.3 电机正反转控制plc设计讨论
(1)电力拖动是指对电动机的控制,采用继电器-接触器控制,都有自己的基本控制电路。采用plc控制也应该有自己的基本控制环节,为此而提出电机正反转控制plc设计讨论,寻找其较好的控制方案。
(2)继电器-接触器电气控制原理:继电器-接触器电气控制原理如图4所示。上、下两图比较,不管是电器元件、触点数量、连接导线的数量都是一样的,分别是5只、9个、13条。按钮连线也是6根,但上图的按钮和接触器连线较集中,从维修的角度看要比下图优越。
(3)元件的代号意义:sb0-带磨姑头急停按钮。5sb1、5sb2-正反转启/停按钮。5km1-正转接触器。5km2-反转接触器。其中的5km1和5km2要求选用带机械联锁的交流接触器。
(4)工作原理:正转启动—揿5sb1,5km1得电动作,其中一个触点自锁,另一个触点则用于互锁,即断开5km2的线圈回路。反转启动—揿5sb2,首先是5km1失电,其互锁触点恢复闭合,才是5km2得电动作,其中一个触点自锁,另一个触点则用于互锁,即断开5km1的线圈回路。再次正转启动——揿5sb1,首先是5km2失电,其互锁触点恢复闭合,才是5km1得电动作,其中一个触点自锁,另一个触点则用于互锁,即断开5km2的线圈回路。
5 plc控制系统设计
5.1 松下fp1—c24系列plc
图4 继电器-接触器电气控制原理
设计采用日本松下公司生产的fp1-c24系列plc系统作为主机。日本松下电工公司的fp系列plc是可编程控制器市场上的后起之秀,它具有丰富的指令系统,即使是小型机也有近200条指令。cpu处理速度快,运行速度1.6μs/步。程序容量高达2700步/500步,小型机一般都达到3千步左右,高可达5千步,而大型机大也只有60千步。编辑工具的功能强大,无论是手持编程器还是编程工具软件,其编程可监控能力都很强。强大、统一的编程工具,是设计人员的佳选择。网络通信功能强大,此系列的各种机型都提供了通信功能,松下电工提供了多达6种的plc网络产品,在同一子网中集成了几种通信方式,我们可根据需要选择。
5.2 i/o端子分配
(1) 输入设备:限位开关: sq1,sq2,sq3,sq4,sq5,sq6, sq7;系统的停止启动按钮: sb1, sb2。
(2) 输出设备:一块板料剪切完成并落入小车时,光电检测开关sq7合一次,计数器作减1计数。本设计中假设小车可多载40块板料。km1控制送料机构电机的接触器;km2、km2ˊ控制压块电机的接触器,驱动电机的正反转,控制压块压紧和放松板料;km3、km3ˊ分别控制剪切电机的接触器,驱动电机的正反转,控制剪切刀上下运行;km4和km4ˊ控制送料小车电机的接触器,驱动电机的正反转,从而控制小车的左行和右行。hl1为小车空载指示,根据需要,还可增设其它信号指示。其输入输出端子分配如图5所示。
图5 i/o端子分配图
5.3 系统的软件
分析可知,本系统是一个多工步的顺序控制系统,运用模块化程序结构,实现系统,有结构简单、编程方便等优点。利用plc移位寄存器的移位功能,可实现步进顺序控制,使每一步严格按顺序动作。计数器对每车板料进行计数,其值由用户根据需要设定。
控制系统的流程顺序如图6所示。系统的梯形图如图7所示。
图6 控制系统流程图
6 结束语
自动剪板机是一种jingque控制板材加工尺寸,将大块金属板材进行自动循环剪切加工,并由送料车运送到下一工序的自动化加工设备,其整个工艺过程很符合顺序控制的要求,所以,在控制过程中,采用可编程控制器对自动剪板机进行控制,它较好地解决了采用继电器-接触器控制,控制系统较复杂,大量的接线使系统可靠性降低,也间接地降低了设备的工作效率这一问题。因此,将plc应用于该控制,具有操作简单、运行可靠、抗干扰能力强、编程简单,控制精度高的特点。在控制的过程中,剪板机剪板的个数可根据工艺参数方便的修改,而且利用光电接近开关检测板料状态非常准确。