供应代理西门子变频器75KW

供应商
上海地友自动化设备有限公司
认证
报价
88.00元每台
品牌
西门子
型号
6SE6440-2UD37-5FB1
3
9
手机号
18701852718
经理
黄世鹏
所在地
上海市松江区叶榭镇叶旺路1号1楼
更新时间
2017-05-04 15:30

详细介绍

 供应代理西门子变频器75kw 供应代理西门子变频器75kw 供应代理西门子变频器75kw6se6440-2ud37-5fb1西门子变频器75kw 380-480v 3ac无内置滤波器西门子mm440变频器不带滤波器75kw  380-480v 6se6440-2ud37-5fb16se6440-2ud37-5fb1 micromaster 440,不带滤波器,3ac 380-480v +10/-10%47-63hz,恒转矩,额定输出功率,75 kw 过载 150%,用于 60s,200% 3 s,平方转矩,额定输出功率,90 kw850 x 350 x 320 (h x w x d),防护等级 ip20,环境温度 -10 - +50 ℃,不带 aop/bop;产品图片: 联 系 人 :黄 世 鹏 ( 销 售 经 理 ) 工 作 q q :6 4 9 4 2 6 2 8 1 联系电话:1 87 0 1 8 5 2 7 1 8 工作微信:1 8 7 0 1 8 5 2 7 1 8  上海地友自动化设备有限公司本着“以人为本、科技先导、顾客满意、持续改进”的工作方针,致力于工业自动化控制领域的产品开发、工程配套和系统集成,拥有丰富的自动化产品的应用和实践经验以及雄厚的技术力量,尤其以plc复杂控制系统、传动技术应用、伺服控制系统、数控备品备件、人机界面及网络/软件应用为公司的技术特长,几年来,上海地友自动化设备有限公司在与德国siemens公司自动化与驱动部门的长期紧密合作过程中,建立了良好的相互协作关系。  主要优势产品西门子:s7-200cn、s7-200、smart200、s7-300、s7-400、s7-1200、触摸屏、6fc、6sn、s120、v10、v20、v60、v80、g110、g120、6ra、伺服数控备件、ncu、mm系列变频器。6se6440-2ud37-5fb1 相似图像 micromaster 440,不带滤波器,3ac 380-480v +10/-10%47-63hz,恒转矩,额定输出功率,75 kw 过载 150%,用于 60s,200% 3 s,平方转矩,额定输出功率,90 kw850 x 350 x 320 (h x w x d),防护等级 ip20,环境温度 -10 - +50 ℃,不带 aop/bop列表价(不含增值税) 显示价格   您的单价(不含增值税) 显示价格   pdf 格式的数据表 下载 服务和支持(手册,认证,问答...) 下载     产品 商品编号(市售编号) 6se6440-2ud37-5fb1产品说明 micromaster 440,不带滤波器,3ac 380-480v +10/-10%47-63hz,恒转矩,额定输出功率,75 kw 过载 150%,用于 60s,200% 3 s,平方转矩,额定输出功率,90 kw850 x 350 x 320 (h x w x d),防护等级 ip20,环境温度 -10 - +50 ℃,不带 aop/bop产品家族 订货数据总览 产品生命周期 (plm) pm300:有效产品 价格数据 价格组 / 总部价格组 ib /列表价(不含增值税) 显示价格 您的单价(不含增值税) 显示价格 金属系数 无 交付信息 出口管制规定 al : 3d225 /eccn : n 工厂生产时间 32 天 净重 (kg) 56.0 kg 产品尺寸 (w x l x h) 未提供 包装尺寸 未提供包装尺寸单位的测量 未提供 数量单位 1 件 包装数量 未提供 其他产品信息 ean 未提供 upc 未提供 商品代码85044097 lkz_fdb/ catalogid da51-j 产品组 9823 原产国 中国 compliance withthe substance restrictions according to rohs directive 阐明 rohs 合规性产品类别 未提供 电气和电子设备使用后的收回义务类别 没有电气和电子设备使用后回收的义务 分类     版本 分类eclass 5.1 27-02-31-01 unspsc 15 39-12-20-01  |  捆绑销售: 6se6400-0bp00-0aa1 micromaster 4 basic operator panel (bop)   6se6440-2ud27-5ca1 micromaster 440,不带滤波器,3ac 380-480v+10/-10% 47-63hz,恒转矩,额定输出功率,7.5 kw 过载 150%,用于 60s,200% 3s,平方转矩,额定输出功率,11 kw 245 x 185 x 195 (h x w x d),防护等级 ip20,环境温度 -10- +50 ℃,不带 aop/bop    6se6440-2ud31-1ca1 micromaster440,不带滤波器,3ac 380-480v +10/-10% 47-63hz,恒转矩,额定输出功率,11 kw 过载 150%,用于60s,200% 3 s,平方转矩,额定输出功率,15 kw 245 x 185 x 195 (h x w x d),防护等级ip20,环境温度 -10 - +50 ℃,不带 aop/bop    6se6440-2ud33-7eb1micromaster 440,不带滤波器,3ac 380-480v +10/-10% 47-63hz,恒转矩,额定输出功率,37kw 过载 150%,用于 60s,200% 3 s,平方转矩,额定输出功率,45 kw 650 x 275 x 245 (h x wx d),防护等级 ip20,环境温度 -10 - +50 ℃,不带 aop/bop   6se6440-2uc17-5aa1 micromaster 440,不带滤波器,1/3ac200-240v,+10/-10% 47-63hz,恒转矩,额定输出功率,0.75 kw 过载 150%,用于 60s,200% 3s,平方转矩,额定输出功率,0.75 kw 173 x 73 x 149 (h x w x d),防护等级 ip20,环境温度 -10- +50 ℃,不带 aop/bop   technical informationen 产品信息   组态工具跳转到 overview overview shaft misalignmen shaft misalignment is theresult of displacement during assembly and operation and, wheremachines constructed with two radial bearings each are rigidlycoupled, will cause high loads being placed on the bearings.elastic deformation of base frame, foundation and machine housingwill lead to shaft misalignment which cannot be prevented, even byprecise alignment. furthermore, because individual components ofthe drive train heat up differently during operation, heatexpansion of the machine housings causes shaft misalignment. poorlyaligned drives are often the cause of seal, rolling bearing orcoupling failure. alignment should be carried out by specialistpersonnel in accordance with flender operating instructions.depending on the direction of the effective shaft misalignment adistinction is made between: axial misalignment radial misalignmentangular misalignment couplings can be categorized into one of thefollowing groups: single-joint couplings couplings with flexibleelements mainly made of elastomer materials. shaft misalignmentresults in deformation of the elastomer elements. the elastomerelements can absorb shaft misalignment as deformations in an axial,radial and angular direction. the degree of permissiblemisalignment depends on the coupling size, the speed of rotationand the type of elastomer element.  single-joint couplings donot require an adapter and are therefore short versions. example: in the case of a rupex rwn coupling 198 with an outerdiameter of 198 mm and a speed of 1500 rpm, the permittedradial misalignment is Δkr  = 0.3 mm. two-jointcouplings two-joint couplings are always designed with an adapter.the two joint levels are able to absorb axial and angularmisalignment. radial misalignment occurs via the gap between thetwo joint levels and the angular displacement of the joint levels.the permitted angular misalignment per joint level is fre 0.5°. the permitted shaft misalignment of the coupling can beadjusted via the length of the adapter. if there are more than twojoint  levels, it is not possible to define the position ofthe coupling parts relative to the axis of rotation (the lessfre used parallel couplings are an exception). example: arpex ars-6 nen 210-6 coupling with a shaft distance of160 mm with a permitted radial misalignment ofΔkr  = 1.77 mm (angle per joint level 0.7°).restorative forces shaft misalignment causes restorative forces toact on the coupled shafts which are determined by the displacementstiffness of the coupling. these restorative forces are frecomparatively weak and can usually be disregarded. where bearingsor shafts are under heavy loads, the restorative forces should betaken into account. balancing because of primary shaping processesand machining the coupling components are manufactured with a massdistribution about the axis of rotation of the motor, gear unit ordriven machine which is not always ideal. balancing means improvingthe mass distribution of a rotating body so that it rotates on itsbearings with a sufficiently limited effect of free centrifugalforces. the imbalance force increases linearly with the distancebetween the center of gravity of body and the axis of rotation, theweight of the body and the rotor speed s f = imbalance forces = center of gravity of body e = distance of center of gravity ofbody from the pivot axis in the case of rotating unbalancedcoupling parts rotary, imbalance forces develop which impose loadson the bearings of the machine shafts and excite vibration. highvibration values on drives are fre detected as early asinitial start-up, if the balance of the machine shafts or themounted coupling parts is insufficient or the balancingspecifications are incompatible. the balance condition of thecoupling can be measured on balancing machines. by adding ordrilling away material a balance condition which meets there can be achieved. balance levels the so-called level g to din iso 1940 indicates a range ofpermitted residual imbalance from zero up to an upper limit.applications can be grouped on the basis of similarity analysis.for many applications a coupling balance of g 16 issufficient. on drives susceptible to vibration the balance should be g 6.3. only in special cases is a better balance re single- and two-level balancing for discoidbodies (such as brake disks, coupling hubs) so-called single-levelbalancing is carried out. the mass compensation for the imbalanceis undertaken at a single level only. for historical reasonssingle-level balancing is also known as static balancing. on longbodies such as adapters mass compensation must be implemented attwo levels to reduce the couple imbalance. two-level balancing iscarried out while the rotor body is rotating. historically this isknown as dynamic balancing. besides the required balance ,it is necessary to set standards which define how the mass of theparallel key is to be taken into consideration when balancing. inthe past motor rotors have fre been balanced in accordancewith the full parallel key standard. the "appropriate" balancecondition of the coupling hub was described as "balancing with openkeyway" or "balancing after keyseating". today it is usual for themotor rotor, as well as the gear unit and driven machine shaft, tobe balanced in accordance with the half parallel key standard.balancing standard in accordance with din iso 8821 full parallelkey standard the parallel key is inserted in the shaft keyway, thenbalancing is carried out. the coupling hub must be balanced withoutparallel key after keyseating. marking of shaft and hub with "f"(for "full"). half parallel key standard the balancing standardnormally applied today. before balancing a half parallel key isinserted in the shaft and another in the coupling hub.alternatively balancing can be carried out before cutting thekeyway. the balanced parts must be marked with an "h". this markingcan be dispensed with if it is absolutely clear which parallel keystandard has been applied. no parallel key standard balancing ofshaft and coupling hub after keyseating, but without parallel key.not used in practice. marking of shaft and hub with "n" (for "no").the length of the parallel key is determined by the shaft keyway.coupling hubs may be designed considerably shorter than the shaft.to prevent imbalance forces caused by projecting parallel keyfactors when balancing in accordance with the half parallel keystandard in the case of applications with high balancing re, grooved spacer rings can be fitted or steppedparallel keys used. flender balancing standards the balancing speedis not included in the product code, so the balancing isspecified as the maximum permitted center of gravity eccentricity.from the center of gravity eccentricity the balancing levelto din iso 1940 can be easily calculated for the respectiveoperating speed. the operating speed and balancing levelare proportional. flender  balancing standard- balancing fine-  balancing micro  balancing center ofgravity  eccentricity 100 µm 40 µm 16 µmoperating speed balancing level to din iso 1940600 rpm g 6.3 g 2.5 g 1 1000 rpm g 10g 4 g 1.6 1500 rpm g 16 g 6.3 g 2.53000 rpm g 32 g 12.6 g 5 3800 rpmg 40 g 16 g 6.3 note: every balancing alsomeets the re of balancing with a higher numericalvalue. for many applications the following balancing recommendation applies:   standard balancing fine balancingcoupling v = da Þ n/19100   short version with lg ≤ 3 xda v ≤ 30 m/s v > 30 m/s long version with lg > 3 xda v ≤ 15 m/s v > 15 m/s peripheral speed v in m/scoupling outer diameter da in mm coupling speed n in rpm couplinglength lg in mm the following balancing standards must be observed:subassemblies and coupling parts are designed with standardbalancing . fine balancing and microbalancing are availableto order. higher balancing are provided on request, aftertechnical clarification. hub parts without finished bore are notbalanced. fludex couplings are subject to special balancingstandards. arpex couplings in standard balancing areunbalanced. the balancing of standard balancing is nearlyalways adhered to by steel components which are machined all roundand precisely guided adapters. the number of balancing levels(single- or two-level balancing) is specified by flender. unlessotherwise re, the unit is balanced in accordance with thehalf parallel key standard. balancing in accordance with the fullparallel key standard must be specified in the product code.shaft-hub connections the bore and the shaft-hub connection of thecoupling is determined by the design of the machine shaft. in thecase of iec standard motors the shaft diameters and parallel keyconnections are specified in accordance withdin en 50347. for diesel motors the flywheel connectionsare fre specified in accordance with sae j620d ordin 6288. besides the very widely used connection of shaft andhub with parallel keys to din 6885 and cylindrically boredhubs, couplings with taper clamping bushes, clamping sets,shrink-fit connections and splines to din 5480 are common. theform strength of the shaft/hub connection can only be demonstratedwhen shaft dimensions and details of the connection are available.the coupling torques specified in the tables of performance data ofthe coupling series do not apply to the shaft-hub connectionunrestrictedly. in the case of the shaft-hub connection withparallel key the coupling hub must be axially secured e.g. with aset screw or end plate. the parallel key must be secured againstaxial displacement in the machine shaft. all flender couplings witha finished bore and parallel keyway are designed with a set screw.the exceptions are some couplings of the fludex series, in whichend plates are used. during assembly taper clamping bushes arefrictionally connected to the machine shaft. assembly assembly,start-up, maintenance and servicing of the coupling are describedin the operating instructions. contact protection couplings arerotating components which can pose a risk to the environment.flender in the operating instructions prescribes fitting couplingswith a suitable contact guard, also called a coupling guard. thecontact guard must provide a firm cover to protect against contactwith the rotating coupling. the coupling must also be protectedagainst blows from objects striking it. the coupling guard mustenable the coupling to be ade ventilated. the followingguidelines give information on designing the contact guard:2006/42/ec ec machinery directive; en 13463-1section 13.3.2.1; en 13463-1 section 7.4;en 13463-1 section 8.1. maintenance all-steel membranecouplings of the arpex series require no maintenance. if theoperating and mounting conditions have been adhered to, onlyregular visual inspection is re elastomer elements,elastomer seals and lubricants are subject to wear through ageingand loads. to avoid damage to the coupling or failure of the drive,the zapex, n-eupex, n-eupex ds, rupex, bipex, elpex, elpex-s,elpex-b and fludex series must be maintained in accordance with theoperating instructions.  on gear couplings the lubricant mustbe changed at regular intervals. on flexible or highly flexiblecouplings the torsional backlash or the torsion angle must bechecked at regular intervals under load. if a limit value isexceeded the elastomer element must be replaced. it is veryimportant to maintain couplings which are operated in a potentiallyexplosive environment, as couplings which are not maintained canbecome ignition sources. corrosion protection depending on theenvironmental conditions, suitable corrosion protection must bespecified for the coupling. unless otherwise specified in theorder, steel and cast iron surfaces are shipped with a simplepreservative. ambient conditions because of the environment thecoupling has to meet a large number of additional re.couplings must be as suitable for use in a potentially explosiveenvironment as for use at a high or low ambient temperature. theenvironment may be defined as chemically aggressive or be subjectto laboratory conditions or re of food manufacture. atexand ec machinery directive wherever a potentially explosiveenvironment cannot be ruled out the machinery used must meetspecial conditions in order to prevent the outbreak of fire as faras possible. within the european union, directive 94/9/ec appliesto these applications. this directive, also called atex 95,harmonizes the individual states' legal re for explosionprevention and clearly defines the procedure for checking andcirculating machines and parts.  whether or not a machine isused in a potentially explosive environment, the manufacturer isrequired under ec machinery directive 98/37/ec to assess and as faras possible prevent hazards which may arise from his product. theoperator has an obligation to ascertain whether an environment ispotentially explosive. details of this are laid down in directive1999/92/ec, also known as atex 137. the manufacturer isresponsible for ensuring that the product is safe as defined in theec machinery directive and conforms to directive 94/9/ec, if the exre is specified by the operator. the drive train mostlycomprises individual pieces of e which are put together toform a subassembly. if the individual pieces of e, such asthe motor, coupling, gear unit or driven machine, conform todirective 94/9/ec, the manufacturer of the overall unit can limitthe risk assessment to the additional hazards which arise from thecombination of different individual pieces of e. thehazards which can arise from the individual pieces of e areassessed by the relevant suppliers. all flender couplings conformto the re of the ec machinery directive 98/37/ec. thecoupling series suitable for use in potentially explosiveenvironments are marked ex. coupling behavior during overloadconditions behavior under overload where the torque is considerablyabove the limits of use of the coupling concerned is determined bythe engineering design of the coupling series. the zapex, arpex,n-eupex, rupex and bipex coupling series can withstand overloadsuntil the breakage of metal parts. these coupling series aredesignated as fail-safe. coupling types which can withstandoverload, i.e. fail-safe types, are used e.g. in crane systems. then-eupex ds, elpex-b, elpex-s and elpex coupling series throwoverload. the elastomer element of these couplings is irreparablydamaged without damage to metal parts when subjected to excessiveoverload. these coupling series are designated as non-fail-safe.the types that fail can be fitted with a fail-safe device. thiscomponent enables emergency operation, even after the rubberelement of the coupling has been irreparably damaged. the fluidcouplings of the fludex series withstand a load for a short time.persistent overload causes the fludex coupling to heat up beyondlimits, causing the fuse to operate and so emptying the couplingand interrupting the torque transmission. torsional and bendingvibrations on drives which are prone to torsional and bendingvibrations, calculations such as natural frequency calculations,torsional vibration simulations or bending vibration calculationsare necessary. the drive train may, depending on complexity, beregarded as a two-mass vibration-generating system or n-massvibration-generating system. the vibration-generating masses aredefined by the rotating bodies and the couplings by the couplingstiffnesses and shaft stiffnesses. the effect of torsionalvibration excitations on the behavior of the system is calculated.torsional vibration excitations may occur during the starting of anasynchronous motor, during a motor short circuit or in dieselengine drives. bending vibrations may be critical, if the couplingis insufficiently balanced and/or at an operating speed close tothe critical speed. the details needed for calculating torsionalvibration dynamic torsional stiffness damping (specification of thedamping coefficient ψ or lehr's damping d = ψ/4π). massmoment of inertia of the coupling halves are specified in thecoupling catalog. standards machines 2006/42/eg ec machinerydirective (formerly: 98/9/ec) 94/9/eg atex 95 directive –manufacturer – and atex guideline to directive 94/9/ec 1999/92/egatex 137 directive – operator – and atex guideline to directive199/92/ec din en 13463 non-electric e for use inpotentially explosive areas din en 1127 potentiallyexplosive atmospheres, explosion protection couplings din 740elastic shaft couplings part 1 and part 2 vdi guideline 2240shaft couplings - systematic subdivision according to theirproperties vdi technical group engineering design 1971 api 610centrifugal pumps for petroleum, chemical and gas industry servicesapi 670 machinery protection system api 671 specialpurpose couplings for petroleum, chemical and gas industry servicesbalancing din iso 1940 re for the balancing of rigid rotors din iso 8821 mechanicalvibrations; standard governing  the type of parallel keyduring balancing of shafts and composite parts shaft-hubconnections din 6885 driver connections without taper action –parallel keys – keyways sae j5620d flywheels for industrialengines ... din 6288 internal-combustion piston enginesconnection dimen­sions and re for flywheels and flexiblecoupling asme b17.1 keys and keyseats din en 50347general-purpose three-phase induction motors with standarddimensions and output data bs 46-1:1958 keys and keyways and taperpins specification formula symbols key to the formula symbols namesymbol unit explanation torsional stiffness, dynamic ctdyn nm/radfor calculating torsional vibration excitation frequency ferr hzexcitation frequency of motor or driven machine moment of inertia jkgm2 moment of inertia of coupling sides 1 and 2 axial misalignmentΔka mm axial misalignment of the coupling halves radialmisalignment Δkr mm radial misalignment of the coupling halvesangular misalignment Δkw ° angular misalignment of the couplinghalves service factor fb   factor expressing the real couplingload as a ratio of the nominal coupling load frequency factor ff  factor expressing the frequency dependence of theue load temperature factor ft   factor taking into accountthe reduction in strength of flexible rubber materials at a highertemperature weight m kg weight of the coupling rated speed nn rpmcoupling speed maximum coupling speed nkmax rpm maximum permissiblecoupling speed rated power pn kw rated output on the coupling,usually the output of the driven machine rated torque tn nmue as nominal load on the coupling alternating torque tw nmamplitude of the dynamic coupling load maximum torque tmax nm morefre occurring maximum load, e.g. during startingue tol nm very infre occurring maximum load, e.g. duringshort circuit or blocking conditions nominal coupling torque tkn nmtorque which can be transmitted as static torque by the couplingover the period of use. maximum coupling torque tkmax nm tor can be fre transmitted (up to 25 times an hour) asmaximum torque by the coupling. coupling overload torque tkol nmtorque which can very infre be transmitted as maximum torqueby the coupling. alternating cou­pling torque tkw nm tor which can be transmitted by the coupling asue at a frequency of 10 hz over the period of use. resonancefactor vr   factor specifying the torque increase at resonancetemperature ta °c ambient temperature of the coupling in operationdamping coefficient Ψ psi damping parameter        全部关于 technical informationen产品与解决方案在线目录与订购系统技术信息服务与支持联系人与合作伙伴服务项目   功率模块和进线侧组件 装置型 风冷式功率模块装置型 风冷式功率模块 4/22 ■ 集成 装置型风冷式功率模块通过 与上级控制单元通信。 上级控制单元可以是cu310-2、 cu320-2 或 simotion d 控制单 元。 ???? ??? ?? ?? ???? 0 ?? 1 ?? 2 1) 24 v????????????????? cu310-2 ? d410-2 ??????? ipd ? br ?? + br ?? - fb?? + fb ?? - 230 v 1 ? ac 380 v ? 480 v 3 ? ac ????? ?? ?? ???????? -temp +temp ???? ???? ?? g_d211_zh_00254a p24_1 -x9 2 1 4 3 65 m_1 led ep m1 x400 x401 x402 ep +24 v -x41 1 2 3 4 -x46 4 3 2 1 == dc 24 v u2 v2 w2 pe u1 v1 w1 pe l1l2l3 pe m 3 ~ e dcps dcpa r1 r2dcna dcns m 1~ 8 7 + + m m -x42 1) 1 4 装置型风冷式功率模块的连接示例 注意:集成的 24 v电源的 x42 接线端上最多可负载 2 a 电流。通 过集成电源为控制单元供电时,必须特别注意数字量输出端的总负载,以便不超过最大电流 2 a 的限制。 功率模块和进线侧组件 装置型 风冷式功率模块 装置型 风冷式功率模块 4/23 ■技术规格 装置型风冷式功率模块 6sl3310-1te3... 进线电压 (海拔 2000 米 (6562 ft) 以下) 380... 480 v 3 相 ac 10 %(运行时 -15 % < 1 分钟) 线路 接地的 tn/tt 系统和未接地的 it系统 进线电源频率 47 ... 63 hz 功率因数 针对 3 相 ac 连接电压和额定功率 • 基波功率因数 (cos  1 ) > 0.96 • 总和 (  ) 0.75 … 0.93 过压类别 符合 en 60664-1 iii类 直流母线预充电频率 最大值 1  每 300 s 直流母线电压近似值 1.35 进线电压 输出频率 • 伺服控制类型 0... 650 hz 1) • 矢量控制类型 0 ... 300 hz 1) • v/f 控制类型 0 ... 600 hz 1)开关电源 24 v dc -15 %/+20 % 主接触器控制 端子排 x9/5-6 240 v ac/最大值 8 a 30 vdc/最大值 1a 无线电干扰抑制 • 标准 (和进线电抗器配合使用) c3 类,符合 en 61800-3 •带进线滤波器和进线电抗器 c2 类,符合 en 61800-3 冷却方式 采用内置风扇的加强风冷 允许的环境温度和冷却剂 (空气)温度运行时进线侧组件、电源模块和电机模块 0...40 °c (32 ... 104 °f) 不降容, > 40...55 °c(104 ...131 °f) 参见降容特性曲线 安装海拔高度 海拔 2000 m (6562 ft) 以下不降容, 海拔 >2000 ... 4000 m (6562 ... 13124 ft), 参见降容特性曲线 一致性 ce(低压和 emc 指令) 认证culus 安全集成 符合 iec 61508 的安全完整性等级 2 (sil 2),符合 iso 13849-1 的性能水 平 d(pld),符合 iso 13849-1 或 en 954-1 的控制类别 3。 1)请注意最大输出频率和脉冲频率、电流降容之间的关联。 功率模块和进线侧组件 装置型 风冷式功率模块 装置型 风冷式功率模块 4/24 ■技术规格 (续) 进线电压 装置型风冷式功率模块 380 ... 480 v 3 ac 6sl3310- 1te32-1aa36sl3310- 1te32-6aa3 6sl3310- 1te33-1aa3 6sl3310- 1te33-8aa36sl3310- 1te35-0aa3 输出电流 • 额定电流 i 额定 a 210 260 310 380 490 •基本负载电流 i l a 205 250 302 370 477 • 基本负载电流 i h a 340 438• s6 模式 (40 %) 下的 i s6 a 230 285 340 430 540 • i 最大 a 307 375 453555 715 额定功率 1) • 基于 i 额定 kw (hp) 110 (150) 132 (200) 160 (250) 200(300) 250 (400) • 基于 i h kw (hp) 90 (150) 110 (150) 132 (200) 160(250) 200 (350) 额定脉冲频率 khz 2 2 2 2 2 电流需求 24 v dc 时的最大值 2) a 0.80.8 0.9 0.9 0.9 最大功率损耗 kw 2.54 3.36 4.07 4.67 5.96 冷却风流量要求 m 3 /s(ft 3 /s) 0.17 (6.00) 0.23 (8.12) 0.36 (12.7) 0.36 (12.7) 0.36(12.7) 噪声等级 50/60 hz 下的 l pa (1 m) db 66/67 68/72 68/72 68/72 68/72额定输入电流 a 229 284 338 395 509 进线连接 u1, v1, w1 用于 m10 螺钉的扁 平连接器 用于m10 螺钉的扁 平连接器 用于 m10 螺钉的扁 平连接器 用于 m10 螺钉的扁 平连接器 用于 m10 螺钉的扁 平连接器 •最大导线截面 mm 2 2 185 2 185 2 240 2 240 2 240 直流母线连接 dcpa、dcna (制动模块选件) 用于 m8 螺钉的扁 平连接器 用于 m8 螺钉的扁 平连接器 用于 m8 螺钉的扁 平连接器 用于m8 螺钉的扁 平连接器 用于 m8 螺钉的扁 平连接器 • 最大导线截面 mm 2 1 35 1 35 1 50 150 1 50 直流母线连接 dcps、 dcns 用于 m8 螺钉的扁 平连接器 用于 m8 螺钉的扁 平连接器 用于 m8螺钉的扁 平连接器 用于 m8 螺钉的扁 平连接器 用于 m8 螺钉的扁 平连接器 • 最大导线截面 mm 2 1 35 135 1 70 1 70 1 70 电机连接 u2, v2, w2 用于 m10 螺钉的扁 平连接器 用于 m10螺钉的扁 平连接器 用于 m10 螺钉的扁 平连接器 用于 m10 螺钉的扁 平连接器 用于 m10 螺钉的扁 平连接器 •最大导线截面 mm 2 2 185 2 185 2 240 2 240 2 240 pe 连接 用于 m10螺钉的扁 平连接器 用于 m10 螺钉的扁 平连接器 用于 m10 螺钉的扁 平连接器 用于 m10 螺钉的扁 平连接器 用于 m10螺钉的扁 平连接器 • 最大导线截面 mm 2 2 185 2 185 2 240 2 240 2 240最大电机电缆长度 3) • 屏蔽型 m (ft) 300 (984) 300 (984) 300 (984) 300 (984)300 (984) • 未屏蔽 m (ft) 450 (1476) 450 (1476) 450 (1476) 450 (1476)450 (1476) 防护等级 ip20 ip20 ip20 ip20 ip20 尺寸 • 宽度 mm (in) 326 (12.8)326 (12.8) 326 (12.8) 326 (12.8) 326 (12.8) • 高度 mm (in) 1400(55.1) 1400 (55.1) 1533 (60.3) 1533 (60.3) 1533 (60.3) • 深度 mm (in)356 (14.0) 4) 356 (14.0) 4) 549 (21.6) 549 (21.6) 549 (21.6) 外形尺寸fx fx gx gx gx 近似重量 kg (lb) 104 (229) 104 (229) 162 (357) 162 (357)162 (357)
西门子s7-300,西门子s7-1200,西门子smart200,西门子电源模块,西门子变频器,西门子触摸屏。西门子电机伺服,西门子PLC,西门子电源,西门子模块,西门子电缆,西门子DP接头

展开全文

我们其他产品
咨询 在线询价 拨打电话